Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Immersive Video Compression using Implicit Neural Representations (2402.01596v2)

Published 2 Feb 2024 in eess.IV and cs.CV

Abstract: Recent work on implicit neural representations (INRs) has evidenced their potential for efficiently representing and encoding conventional video content. In this paper we, for the first time, extend their application to immersive (multi-view) videos, by proposing MV-HiNeRV, a new INR-based immersive video codec. MV-HiNeRV is an enhanced version of a state-of-the-art INR-based video codec, HiNeRV, which was developed for single-view video compression. We have modified the model to learn a different group of feature grids for each view, and share the learnt network parameters among all views. This enables the model to effectively exploit the spatio-temporal and the inter-view redundancy that exists within multi-view videos. The proposed codec was used to compress multi-view texture and depth video sequences in the MPEG Immersive Video (MIV) Common Test Conditions, and tested against the MIV Test model (TMIV) that uses the VVenC video codec. The results demonstrate the superior performance of MV-HiNeRV, with significant coding gains (up to 72.33\%) over TMIV. The implementation of MV-HiNeRV is published for further development and evaluation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ho Man Kwan (10 papers)
  2. Fan Zhang (686 papers)
  3. Andrew Gower (3 papers)
  4. David Bull (67 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.