Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implicit-explicit Integrated Representations for Multi-view Video Compression (2311.17350v1)

Published 29 Nov 2023 in cs.CV and cs.MM

Abstract: With the increasing consumption of 3D displays and virtual reality, multi-view video has become a promising format. However, its high resolution and multi-camera shooting result in a substantial increase in data volume, making storage and transmission a challenging task. To tackle these difficulties, we propose an implicit-explicit integrated representation for multi-view video compression. Specifically, we first use the explicit representation-based 2D video codec to encode one of the source views. Subsequently, we propose employing the implicit neural representation (INR)-based codec to encode the remaining views. The implicit codec takes the time and view index of multi-view video as coordinate inputs and generates the corresponding implicit reconstruction frames.To enhance the compressibility, we introduce a multi-level feature grid embedding and a fully convolutional architecture into the implicit codec. These components facilitate coordinate-feature and feature-RGB mapping, respectively. To further enhance the reconstruction quality from the INR codec, we leverage the high-quality reconstructed frames from the explicit codec to achieve inter-view compensation. Finally, the compensated results are fused with the implicit reconstructions from the INR to obtain the final reconstructed frames. Our proposed framework combines the strengths of both implicit neural representation and explicit 2D codec. Extensive experiments conducted on public datasets demonstrate that the proposed framework can achieve comparable or even superior performance to the latest multi-view video compression standard MIV and other INR-based schemes in terms of view compression and scene modeling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chen Zhu (104 papers)
  2. Guo Lu (39 papers)
  3. Bing He (82 papers)
  4. Rong Xie (24 papers)
  5. Li Song (72 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.