Papers
Topics
Authors
Recent
Search
2000 character limit reached

Video Semantic Communication with Major Object Extraction and Contextual Video Encoding

Published 2 Feb 2024 in cs.NI | (2402.01330v1)

Abstract: This paper studies an end-to-end video semantic communication system for massive communication. In the considered system, the transmitter must continuously send the video to the receiver to facilitate character reconstruction in immersive applications, such as interactive video conference. However, transmitting the original video information with substantial amounts of data poses a challenge to the limited wireless resources. To address this issue, we reduce the amount of data transmitted by making the transmitter extract and send the semantic information from the video, which refines the major object and the correlation of time and space in the video. Specifically, we first develop a video semantic communication system based on major object extraction (MOE) and contextual video encoding (CVE) to achieve efficient video transmission. Then, we design the MOE and CVE modules with convolutional neural network based motion estimation, contextual extraction and entropy coding. Simulation results show that compared to the traditional coding schemes, the proposed method can reduce the amount of transmitted data by up to 25% while increasing the peak signal-to-noise ratio (PSNR) of the reconstructed video by up to 14%.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.