Papers
Topics
Authors
Recent
Search
2000 character limit reached

LatticeGraphNet: A two-scale graph neural operator for simulating lattice structures

Published 1 Feb 2024 in cs.LG and cs.CE | (2402.01045v1)

Abstract: This study introduces a two-scale Graph Neural Operator (GNO), namely, LatticeGraphNet (LGN), designed as a surrogate model for costly nonlinear finite-element simulations of three-dimensional latticed parts and structures. LGN has two networks: LGN-i, learning the reduced dynamics of lattices, and LGN-ii, learning the mapping from the reduced representation onto the tetrahedral mesh. LGN can predict deformation for arbitrary lattices, therefore the name operator. Our approach significantly reduces inference time while maintaining high accuracy for unseen simulations, establishing the use of GNOs as efficient surrogate models for evaluating mechanical responses of lattices and structures.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.