Papers
Topics
Authors
Recent
2000 character limit reached

algoXSSF: Detection and analysis of cross-site request forgery (XSRF) and cross-site scripting (XSS) attacks via Machine learning algorithms

Published 1 Feb 2024 in cs.CR | (2402.01012v1)

Abstract: The global rise of online users and online devices has ultimately given rise to the global internet population apart from several cybercrimes and cyberattacks. The combination of emerging new technology and powerful algorithms (of Artificial Intelligence, Deep Learning, and Machine Learning) is needed to counter defense web security including attacks on several search engines and websites. The unprecedented increase rate of cybercrime and website attacks urged for new technology consideration to protect data and information online. There have been recent and continuous cyberattacks on websites, web domains with ongoing data breaches including - GitHub account hack, data leaks on Twitter, malware in WordPress plugins, vulnerability in Tomcat server to name just a few. We have investigated with an in-depth study apart from the detection and analysis of two major cyberattacks (although there are many more types): cross-site request forgery (XSRF) and cross-site scripting (XSS) attacks. The easy identification of cyber trends and patterns with continuous improvement is possible within the edge of machine learning and AI algorithms. The use of machine learning algorithms would be extremely helpful to counter (apart from detection) the XSRF and XSS attacks. We have developed the algorithm and cyber defense framework - algoXSSF with machine learning algorithms embedded to combat malicious attacks (including Man-in-the-Middle attacks) on websites for detection and analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.