Papers
Topics
Authors
Recent
2000 character limit reached

BootsTAP: Bootstrapped Training for Tracking-Any-Point

Published 1 Feb 2024 in cs.CV and stat.ML | (2402.00847v2)

Abstract: To endow models with greater understanding of physics and motion, it is useful to enable them to perceive how solid surfaces move and deform in real scenes. This can be formalized as Tracking-Any-Point (TAP), which requires the algorithm to track any point on solid surfaces in a video, potentially densely in space and time. Large-scale groundtruth training data for TAP is only available in simulation, which currently has a limited variety of objects and motion. In this work, we demonstrate how large-scale, unlabeled, uncurated real-world data can improve a TAP model with minimal architectural changes, using a selfsupervised student-teacher setup. We demonstrate state-of-the-art performance on the TAP-Vid benchmark surpassing previous results by a wide margin: for example, TAP-Vid-DAVIS performance improves from 61.3% to 67.4%, and TAP-Vid-Kinetics from 57.2% to 62.5%. For visualizations, see our project webpage at https://bootstap.github.io/

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 28 likes about this paper.