A non-asymptotic error analysis for parallel Monte Carlo estimation from many short Markov chains (2401.17963v1)
Abstract: Single-chain Markov chain Monte Carlo simulates realizations from a Markov chain to estimate expectations with the empirical average. The single-chain simulation is generally of considerable length and restricts many advantages of modern parallel computation. This paper constructs a novel many-short-chains Monte Carlo (MSC) estimator by averaging over multiple independent sums from Markov chains of a guaranteed short length. The computational advantage is the independent Markov chain simulations can be fast and may be run in parallel. The MSC estimator requires an importance sampling proposal and a drift condition on the Markov chain without requiring convergence analysis on the Markov chain. A non-asymptotic error analysis is developed for the MSC estimator under both geometric and multiplicative drift conditions. Empirical performance is illustrated on an autoregressive process and the P\'olya-Gamma Gibbs sampler for Bayesian logistic regression to predict cardiovascular disease.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.