Exact Dynamics and Shortcuts to Adiabaticity in the Tomonaga-Luttinger Liquid (2401.17884v2)
Abstract: Controlling many-body quantum systems is a highly challenging task required to advance quantum technologies. Here, we report progress in controlling gapless many-body quantum systems described by the Tomonaga-Luttinger liquid (TLL). To do so, we investigate the exact dynamics of the TLL induced by an interaction quench, making use of the $SU(1,1)$ dynamical symmetry group and the Schr\"odinger picture. First, we demonstrate that this approach is useful to perform a shortcut to adiabaticity, that cancels the final non-adiabatic residual energy of the driven TLL and is experimentally implementable in the semiclassical limit of the sine-Gordon model. Second, we apply this framework to analyze various driving schemes in finite time, including linear ramps and smooth protocols.
- F. Haldane, J. Condens. Matter Phys. 14, 2585 (1981a).
- S.-I. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
- J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
- E. H. Lieb, Phys. Rev. 130, 1616 (1963).
- L. Tonks, Phys. Rev. 50, 955 (1936).
- M. Girardeau, J. Math. Phys. 1, 516 (1960).
- M. A. Cazalilla, Phys. Rev. A 67, 053606 (2003).
- D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).
- M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).
- M. A. Cazalilla and M.-C. Chung, J. Stat. Mech.: Theory Exp. 2016, 064004 (2016).
- W. D. Kinoshita T, Wenger T, Nature 440, 900 (2006).
- A. Rahmani and C. Chamon, Phys. Rev. Lett. 107, 016402 (2011).
- B. Dóra and R. Moessner, Phys. Rev. Lett. 119, 026802 (2017).
- B. Dóra, Phys. Rev. B 90, 245132 (2014).
- A. Bácsi and B. Dóra, Phys. Rev. B 88, 155115 (2013).
- B. Dóra and C. P. Moca, Phys. Rev. Lett. 124, 136802 (2020).
- D. M. Kennes and V. Meden, Phys. Rev. B 88, 165131 (2013).
- N. Nessi and A. Iucci, Phys. Rev. B 87, 085137 (2013).
- N. Nessi and A. Iucci, (2015), arXiv:1503.02507 [cond-mat.quant-gas] .
- Y.-M. Wei and H. Lu, Commun. Theor. Phys. 74, 015702 (2021).
- A. del Campo, Phys. Rev. A 84, 031606 (2011a).
- H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).
- M. A. Lohe, J. Phys. A: Math. 42, 035307 (2008).
- A. del Campo and M. G. Boshier, Sci. Rep. 2, 648 (2012).
- A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).
- M. A. Cazalilla, J. Phys. B: At. Mol. Opt. Phys. 37, S1 (2004).
- M. Fowler, J. Phys. C: Solid State Phys. 13, 1459 (1980).
- T. Giamarchi, Quantum physics in one dimension, International series of monographs on physics (Clarendon Press, Oxford, 2004).
- A. del Campo, Phys. Rev. Lett. 126, 180603 (2021).
- M. Bukov and M. Heyl, Phys. Rev. B 86, 054304 (2012).
- P. Chudzinski and D. Schuricht, Phys. Rev. B 94, 075129 (2016).
- B. Sutherland, Phys. Rev. Lett. 80, 3678 (1998).
- A. del Campo, New J. Phys. 18, 015014 (2016).
- M. Beau and A. del Campo, Entropy 22, 515 (2020).
- D. J. Papoular and S. Stringari, Phys. Rev. Lett. 115, 025302 (2015).
- S. Masuda and K. Nakamura, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 1135 (2010).
- M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
- A. del Campo, EPL 96, 60005 (2011b).
- D. Iyer and N. Andrei, Phys. Rev. Lett. 109, 115304 (2012).
- F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981b).
- L. Foini and T. Giamarchi, The European Physical Journal Special Topics 226, 2763 (2017).
- A. Sheikhan and C. Kollath, Phys. Rev. A 91, 043611 (2015).
- A. del Campo, Phys. Rev. Research 2, 043114 (2020).
- J. Yang and A. del Campo, (2022), 10.48550/ARXIV.2210.14937.
- E. Pinney, Proc. Amer. Math. Soc. 1, 681 (1950).
- S. P. Kim and W. Kim, JKPS 69, 1513 (2016).
- M. V. Berry and G. Klein, J. Phys. A Math. Gen. 17, 1805 (1984).
- E. A. Calzetta and B.-L. B. Hu, Nonequilibrium Quantum Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2008).
- A. Polkovnikov and V. Gritsev, Nat. Phys. 4, 477 (2008).
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1982).
- R. Dabrowski and G. V. Dunne, Phys. Rev. D 90, 025021 (2014).
- R. Dabrowski and G. V. Dunne, Phys. Rev. D 94, 065005 (2016).
- S. Deffner, New J. Phys. 18, 012001 (2015).
- A. del Campo, A. Chenu, S. Deng, and H. Wu, “Friction-free quantum machines,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer International Publishing, Cham, 2018) pp. 127–148.
- P. Moosavi, Phys. Rev. Lett. 131, 100401 (2023).
- M. Collura and D. Karevski, Phys. Rev. Lett. 104, 200601 (2010).
- J. Dziarmaga and M. M. Rams, New J. Phys. 12, 055007 (2010).
- F. J. Gómez-Ruiz and A. del Campo, Phys. Rev. Lett. 122, 080604 (2019).
- L. Dupays and A. Chenu, Quantum 5, 449 (2021).
- B. Schoenauer and D. Schuricht, Phys. Rev. B 100, 115418 (2019).
- P. Calabrese and P. L. Doussal, J. Stat. Mech. Theory Exp. 2014, P05004 (2014).
- A. Iucci and M. A. Cazalilla, Phys. Rev. A 80, 063619 (2009).
- D. C. Mattis, J. Math. Phys. 15, 609 (1974).
- A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).
- J. von Delft and H. Schoeller, Ann. Phys. 510, 225 (1998).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.