Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross-positive linear maps, positive polynomials and sums of squares (2401.17425v1)

Published 30 Jan 2024 in math.FA

Abstract: A linear map $\Phi$ between matrix spaces is called cross-positive if it is positive on orthogonal pairs $(U,V)$ of positive semidefinite matrices in the sense that $\langle U,V\rangle:=\text{Tr}(UV)=0$ implies $\langle \Phi(U),V\rangle\geq0$, and is completely cross-positive if all its ampliations $I_n\otimes \Phi$ are cross-positive. (Completely) cross-positive maps arise in the theory of operator semigroups, where they are sometimes called exponentially-positive maps, and are also important in the theory of affine processes on symmetric cones in mathematical finance. To each $\Phi$ as above a bihomogeneous form is associated by $p_\Phi(x,y)=yT\Phi(xxT)y$. Then $\Phi$ is cross-positive if and only if $p_\Phi$ is nonnegative on the variety of pairs of orthogonal vectors ${(x,y)\mid xTy=0}$. Moreover, $\Phi$ is shown to be completely cross-positive if and only if $p_\Phi$ is a sum of squares modulo the principal ideal $(xTy)$. These observations bring the study of cross-positive maps into the powerful setting of real algebraic geometry. Here this interplay is exploited to prove quantitative bounds on the fraction of cross-positive maps that are completely cross-positive. Detailed results about cross-positive maps $\Phi$ mapping between $3\times 3$ matrices are given. Finally, an algorithm to produce cross-positive maps that are not completely cross-positive is presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.