Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Classification complexity of chaotic systems (2401.16983v2)

Published 30 Jan 2024 in math.DS

Abstract: In this paper, we deal with the classification complexity of continuous (Devaney) chaotic systems in dimensions $0,1$ and $\infty$ using the framework of invariant descriptive set theory. We identify the complexity in dimensions $0$ and $\infty$, while in dimension $1$ we get some partial results. More precisely, we prove the topological conjugacy relation of invertible chaotic systems on the Hilbert cube (resp. on all compact metric spaces) has the same complexity as (i.e. is Borel bireducible with) the universal orbit relation induced by a Polish group. As a consequence, this answers a recent question asked by L. Ding. We also prove that the topological conjugacy relation of invertible chaotic systems on the Cantor space has the same complexity as the universal relation induced by the group $S_\infty$. This answers a recent question by M. Foreman. Some non-trivial bounds on the classification complexity of chaotic systems on the interval and on the circle are also obtained. Namely, the lower bound is the Vitali equivalence relation, and the upper bound is the equality of countable sets of reals. This especially implies that the relation is Borel. However, the exact complexity remains unknown.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.