Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mild Solution of Semilinear Rough Stochastic Evolution Equations (2401.16815v1)

Published 30 Jan 2024 in math.PR

Abstract: In this paper, we investigate a semilinear stochastic parabolic equation with a linear rough term $du_{t}=\left[L_{t}u_{t}+f\left(t, u_{t}\right)\right]dt+\left(G_{t}u_{t}+g_{t}\right)d\mathbf{X}{t}+h\left(t, u{t}\right)dW_{t}$, where $\left(L_{t}\right)_{t \in \left[0, T\right]}$ is a family of unbounded operators acting on a monotone family of interpolation Hilbert spaces, $\mathbf{X}$ is a two-step $\alpha$-H\"older rough path with $\alpha \in \left(1/3, 1/2\right]$ and $W$ is a Brownian motion. Existence and uniqueness of the mild solution are given through the stochastic controlled rough path approach and fixed-point argument. As a technical tool to define rough stochastic convolutions, we also develop a general mild stochastic sewing lemma, which is applicable for processes according to a monotone family.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube