Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Robust Data-driven Predictive Control for Smoothing Mixed Traffic Flow (2401.15826v2)

Published 29 Jan 2024 in math.OC, cs.SY, and eess.SY

Abstract: In a mixed traffic with connected automated vehicles (CAVs) and human-driven vehicles (HDVs) coexisting, data-driven predictive control of CAVs promises system-wide traffic performance improvements. Yet, most existing approaches focus on a centralized setup, which is not computationally scalable while failing to protect data privacy. The robustness against unknown disturbances has not been well addressed either, causing safety concerns. In this paper, we propose a decentralized robust DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control) approach for CAVs to smooth mixed traffic flow. In particular, each CAV computes its control input based on locally available data from its involved subsystem. Meanwhile, the interaction between neighboring subsystems is modeled as a bounded disturbance, for which appropriate estimation methods are proposed. Then, we formulate a robust optimization problem and present its tractable computational solutions. Compared with the centralized formulation, our method greatly reduces computation burden with better safety performance, while naturally preserving data privacy. Extensive traffic simulations validate its wave-dampening ability, safety performance, and computational benefits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki, and S. Yukawa, “Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam,” New Journal of Physics, vol. 10, no. 3, p. 033001, 2008.
  2. S. E. Li, Y. Zheng, K. Li, Y. Wu, J. K. Hedrick, F. Gao, and H. Zhang, “Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 3, pp. 46–58, 2017.
  3. Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 1, pp. 14–26, 2015.
  4. V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, “Cooperative adaptive cruise control in real traffic situations,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1, pp. 296–305, 2013.
  5. R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, H. Pohlmann, F. Wu, B. Piccoli et al., “Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments,” Transportation Research Part C: Emerging Technologies, vol. 89, pp. 205–221, 2018.
  6. Y. Zheng, J. Wang, and K. Li, “Smoothing traffic flow via control of autonomous vehicles,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 3882–3896, 2020.
  7. K. Li, J. Wang, and Y. Zheng, “Cooperative formation of autonomous vehicles in mixed traffic flow: Beyond platooning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 15 951–15 966, 2022.
  8. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, “Dynamical model of traffic congestion and numerical simulation,” Physical Review E, vol. 51, no. 2, p. 1035, 1995.
  9. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical Review E, vol. 62, no. 2, p. 1805, 2000.
  10. I. G. Jin and G. Orosz, “Optimal control of connected vehicle systems with communication delay and driver reaction time,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 8, pp. 2056–2070, 2016.
  11. J. Wang, Y. Zheng, Q. Xu, J. Wang, and K. Li, “Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 12, pp. 7445–7459, 2021.
  12. M. Di Vaio, G. Fiengo, A. Petrillo, A. Salvi, S. Santini, and M. Tufo, “Cooperative shock waves mitigation in mixed traffic flow environment,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 12, pp. 4339–4353, 2019.
  13. J. Li, J. Wang, S. E. Li, and K. Li, “Learning optimal robust control of connected vehicles in mixed traffic flow,” in 2023 62nd IEEE Conference on Decision and Control (CDC).   IEEE, pp. 1112–1117.
  14. S. Feng, Z. Song, Z. Li, Y. Zhang, and L. Li, “Robust platoon control in mixed traffic flow based on tube model predictive control,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 4, pp. 711–722, 2021.
  15. L. Guo and Y. Jia, “Anticipative and predictive control of automated vehicles in communication-constrained connected mixed traffic,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 7206–7219, 2021.
  16. C. Wu, A. R. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: A modular learning framework for mixed autonomy traffic,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1270–1286, 2021.
  17. E. Vinitsky, K. Parvate, A. Kreidieh, C. Wu, and A. Bayen, “Lagrangian control through deep-RL: Applications to bottleneck decongestion,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2018, pp. 759–765.
  18. W. Gao, Z.-P. Jiang, and K. Ozbay, “Data-driven adaptive optimal control of connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1122–1133, 2016.
  19. M. Huang, Z.-P. Jiang, and K. Ozbay, “Learning-based adaptive optimal control for connected vehicles in mixed traffic: robustness to driver reaction time,” IEEE Transactions on Cybernetics, vol. 52, no. 6, pp. 5267–5277, 2020.
  20. J. Zhan, Z. Ma, and L. Zhang, “Data-driven modeling and distributed predictive control of mixed vehicle platoons,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 572–582, 2022.
  21. J. Lan, D. Zhao, and D. Tian, “Data-driven robust predictive control for mixed vehicle platoons using noisy measurement,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 6, pp. 6586–6596, 2021.
  22. J. Wang, Y. Zheng, K. Li, and Q. Xu, “DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow,” IEEE Transactions on Control Systems Technology, vol. 31, no. 6, pp. 2760–2776, 2023.
  23. J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control: In the shallows of the deepc,” in 2019 18th European Control Conference (ECC).   IEEE, pp. 307–312.
  24. J. Wang, Y. Zheng, C. Chen, Q. Xu, and K. Li, “Leading cruise control in mixed traffic flow: System modeling, controllability, and string stability,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12 861–12 876, 2021.
  25. G. Orosz, “Connected cruise control: modelling, delay effects, and nonlinear behaviour,” Vehicle System Dynamics, vol. 54, no. 8, pp. 1147–1176, 2016.
  26. J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A note on persistency of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325–329, 2005.
  27. J. Wang, Y. Zheng, J. Dong, C. Chen, M. Cai, K. Li, and Q. Xu, “Implementation and experimental validation of data-driven predictive control for dissipating stop-and-go waves in mixed traffic,” IEEE Internet of Things Journal, vol. 11, no. 3, pp. 4570–4585, 2023.
  28. F. Gao, S. E. Li, Y. Zheng, and D. Kum, “Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay,” IET Intelligent Transport Systems, vol. 10, no. 7, pp. 503–513, 2016.
  29. J. Wang, Y. Lian, Y. Jiang, Q. Xu, K. Li, and C. N. Jones, “Distributed data-driven predictive control for cooperatively smoothing mixed traffic flow,” Transportation Research Part C: Emerging Technologies, vol. 155, p. 104274, 2023.
  30. F. Lyu, H. Zhu, N. Cheng, H. Zhou, W. Xu, M. Li, and X. Shen, “Characterizing urban vehicle-to-vehicle communications for reliable safety applications,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2586–2602, 2019.
  31. Y. Zhou, S. Ahn, M. Wang, and S. Hoogendoorn, “Stabilizing mixed vehicular platoons with connected automated vehicles: An h-infinity approach,” Transportation Research Part B: Methodological, vol. 132, pp. 152–170, 2020.
  32. J. Monteil, M. Bouroche, and D. J. Leith, “ℒ2subscriptℒ2\mathcal{L}_{2}caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and ℒ∞subscriptℒ\mathcal{L}_{\infty}caligraphic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT stability analysis of heterogeneous traffic with application to parameter optimization for the control of automated vehicles,” IEEE Transactions on Control Systems Technology, vol. 27, no. 3, pp. 934–949, 2018.
  33. S. S. Mousavi, S. Bahrami, and A. Kouvelas, “Synthesis of output-feedback controllers for mixed traffic systems in presence of disturbances and uncertainties,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 6, pp. 6450–6462, 2023.
  34. C. Zhao, H. Yu, and T. G. Molnar, “Safety-critical traffic control by connected automated vehicles,” Transportation Research Part C: Emerging Technologies, vol. 154, p. 104230, 2023.
  35. L. Huang, J. Coulson, J. Lygeros, and F. Dörfler, “Decentralized data-enabled predictive control for power system oscillation damping,” IEEE Transactions on Control Systems Technology, vol. 30, no. 3, pp. 1065–1077, 2021.
  36. X. Shang, J. Wang, and Y. Zheng, “Smoothing mixed traffic with robust data-driven predictive control for connected and autonomous vehicles,” American Control Conference (ACC) 2024, to appear. Available at arXiv preprint arXiv:2310.00509.
  37. D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications of robust optimization,” SIAM Review, vol. 53, no. 3, pp. 464–501, 2011.
  38. J. Löfberg, “Automatic robust convex programming,” Optimization Methods and Software, vol. 27, no. 1, pp. 115–129, 2012.
  39. J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in 2004 IEEE International Conference on Robotics and Automation.   IEEE, pp. 284–289.
  40. F. Dörfler, J. Coulson, and I. Markovsky, “Bridging direct and indirect data-driven control formulations via regularizations and relaxations,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 883–897, 2022.
  41. X. Shang and Y. Zheng, “Convex approximations for a bi-level formulation of data-enabled predictive control,” arXiv preprint arXiv:2312.15431, 2023.
  42. J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625–653, 1999. [Online]. Available: https://doi.org/10.1080/10556789908805766
  43. E. D. Andersen and K. D. Andersen, “The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm,” in High Performance Optimization.   Springer, 2000, pp. 197–232.
  44. DieselNet, “Emission test cycles ece 15 + eudc/nedc,” 2013. [Online]. Available: https://dieselnet.com/standards/cycles/ece_eudc.php
  45. K. Zhang, Y. Zheng, C. Shang, and Z. Li, “Dimension reduction for efficient data-enabled predictive control,” IEEE Control Systems Letters, vol. 7, pp. 3277–3282, 2023.
  46. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Linear tracking mpc for nonlinear systems—part ii: The data-driven case,” IEEE Transactions on Automatic Control, vol. 67, no. 9, pp. 4406–4421, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xu Shang (6 papers)
  2. Jiawei Wang (128 papers)
  3. Yang Zheng (124 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com