Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smoothing Mixed Traffic with Robust Data-driven Predictive Control for Connected and Autonomous Vehicles (2310.00509v1)

Published 30 Sep 2023 in math.OC, cs.SY, and eess.SY

Abstract: The recently developed DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control) method has shown promising performance for data-driven predictive control of Connected and Autonomous Vehicles (CAVs) in mixed traffic. However, its simplistic zero assumption of the future velocity errors for the head vehicle may pose safety concerns and limit its performance of smoothing traffic flow. In this paper, we propose a robust DeeP-LCC method to control CAVs in mixed traffic with enhanced safety performance. In particular, we first present a robust formulation that enforces a safety constraint for a range of potential velocity error trajectories, and then estimate all potential velocity errors based on the past data from the head vehicle. We also provide efficient computational approaches to solve the robust optimization for online predictive control. Nonlinear traffic simulations show that our robust DeeP-LCC can provide better traffic efficiency and stronger safety performance while requiring less offline data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.