Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving AI Risk Management: A Maturity Model based on the NIST AI Risk Management Framework (2401.15229v2)

Published 26 Jan 2024 in cs.CY

Abstract: Researchers, government bodies, and organizations have been repeatedly calling for a shift in the responsible AI community from general principles to tangible and operationalizable practices in mitigating the potential sociotechnical harms of AI. Frameworks like the NIST AI RMF embody an emerging consensus on recommended practices in operationalizing sociotechnical harm mitigation. However, private sector organizations currently lag far behind this emerging consensus. Implementation is sporadic and selective at best. At worst, it is ineffective and can risk serving as a misleading veneer of trustworthy processes, providing an appearance of legitimacy to substantively harmful practices. In this paper, we provide a foundation for a framework for evaluating where organizations sit relative to the emerging consensus on sociotechnical harm mitigation best practices: a flexible maturity model based on the NIST AI RMF.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ravit Dotan (6 papers)
  2. Borhane Blili-Hamelin (10 papers)
  3. Ravi Madhavan (1 paper)
  4. Jeanna Matthews (4 papers)
  5. Joshua Scarpino (1 paper)
Citations (1)