Papers
Topics
Authors
Recent
2000 character limit reached

Adapting cybersecurity frameworks to manage frontier AI risks: A defense-in-depth approach

Published 15 Aug 2024 in cs.CY and cs.CR | (2408.07933v1)

Abstract: The complex and evolving threat landscape of frontier AI development requires a multi-layered approach to risk management ("defense-in-depth"). By reviewing cybersecurity and AI frameworks, we outline three approaches that can help identify gaps in the management of AI-related risks. First, a functional approach identifies essential categories of activities ("functions") that a risk management approach should cover, as in the NIST Cybersecurity Framework (CSF) and AI Risk Management Framework (AI RMF). Second, a lifecycle approach instead assigns safety and security activities across the model development lifecycle, as in DevSecOps and the OECD AI lifecycle framework. Third, a threat-based approach identifies tactics, techniques, and procedures (TTPs) used by malicious actors, as in the MITRE ATT&CK and MITRE ATLAS databases. We recommend that frontier AI developers and policymakers begin by adopting the functional approach, given the existence of the NIST AI RMF and other supplementary guides, but also establish a detailed frontier AI lifecycle model and threat-based TTP databases for future use.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.