Papers
Topics
Authors
Recent
Search
2000 character limit reached

Comparative Analysis of Practical Identifiability Methods for an SEIR Model

Published 26 Jan 2024 in stat.ME, q-bio.PE, and q-bio.QM | (2401.15076v2)

Abstract: Identifiability of a mathematical model plays a crucial role in parameterization of the model. In this study, we establish the structural identifiability of a Susceptible-Exposed-Infected-Recovered (SEIR) model given different combinations of input data and investigate practical identifiability with respect to different observable data, data frequency, and noise distributions. The practical identifiability is explored by both Monte Carlo simulations and a Correlation Matrix approach. Our results show that practical identifiability benefits from higher data frequency and data from the peak of an outbreak. The incidence data gives the best practical identifiability results compared to prevalence and cumulative data. In addition, we compare and distinguish the practical identifiability by Monte Carlo simulations and a Correlation Matrix approach, providing insights for when to use which method for other applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.