Products of locally conformal symplectic manifolds (2401.14918v1)
Abstract: Given two locally conformal symplectic (LCS) structures on manifolds $M_1$ and $M_2$, we construct a natural $\R+$-torsor of locally conformal symplectic structures on a certain covering space $M_1 \boxplus M_2$ of $M_1 \times M_2$. As the smooth construction of $M_1 \boxplus M_2$ is natural from the perspective of flat line bundles, we use this language to phrase the LCS theory. This construction shares many properties with, and in a sense generalizes, the standard symplectic product. Notably, for a Hamiltonian isotopy $\phi_t$ of an LCS manifold $M$, there is an associated Lagrangian embedding $\Gamma(\phi_1) \colon M \hookrightarrow M \boxplus M$, in which certain fixed points of $\phi_1$ are in bijection with intersection points of $\Gamma(\phi_1)$ with the diagonal $\Delta = \Gamma(\mathrm{id})$. Using a Lagrangian intersection of result of the first author and E. Murphy, we may conclude that if $\phi_t$ is a $C0$-small Hamiltonian isotopy, then the number of fixed points of $\phi_1$ is bounded below by the rank of the Novikov theory associated to the Lee class of the LCS structure on $M$. Finally, we end the paper by constructing the suspension of a Lagrangian submanifold along a Hamiltonian isotopy in the LCS theory, again generalizing the symplectic setting.
- The dynamics of conformal hamiltonian flows: dissipativity and conservativity, 2022.
- V. I. Arnol′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPTd. Lagrange and Legendre cobordisms. I. Funktsional. Anal. i Prilozhen., 14(3):1–13, 96, 1980.
- V. I. Arnol′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPTd. Lagrange and Legendre cobordisms. II. Funktsional. Anal. i Prilozhen., 14(4):8–17, 95, 1980.
- On locally conformal symplectic manifolds of the first kind. Bull. Sci. Math., 143:1–57, 2018.
- Lagrangian cobordism. I. J. Am. Math. Soc., 26(2):295–340, 2013.
- Lagrangian cobordism and Fukaya categories. Geom. Funct. Anal., 24(6):1731–1830, 2014.
- Differential forms in algebraic topology, volume 82 of Grad. Texts Math. Springer, Cham, 1982.
- Conformal symplectic geometry of cotangent bundles. J. Symplectic Geom., 17(3):639–661, 2019.
- Yu. V. Chekanov. Lagrangian embeddings and Lagrangian cobordism. In Topics in singularity theory. V. I. Arnold’s 60th anniversary collection, pages 13–23. Providence, RI: American Mathematical Society, 1997.
- Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent. Invent. Math., 82:349–357, 1985.
- Deformations of coisotropic submanifolds in locally conformal symplectic manifolds. Asian J. Math., 20(3):553–596, 2016.
- Jeffrey M. Lee. Manifolds and differential geometry, volume 107 of Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 2009.
- S. P. Novikov. Multivalued functions and functionals. An analogue of the Morse theory. Sov. Math., Dokl., 24:222–226, 1981.
- Darboux–weinstein theorem for locally conformally symplectic manifolds. Journal of Geometry and Physics, 111:1–5, 2017.
- Sheila Sandon. On iterated translated points for contactomorphisms of ℝ2n+1superscriptℝ2𝑛1\mathbb{R}^{2n+1}blackboard_R start_POSTSUPERSCRIPT 2 italic_n + 1 end_POSTSUPERSCRIPT and ℝ2n×S1superscriptℝ2𝑛superscript𝑆1\mathbb{R}^{2n}\times S^{1}blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. Int. J. Math., 23(2):14, 2012. Id/No 1250042.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.