Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Study of $e^{+}e^{-}\rightarrowπ^{+}π^{-}π^{0}$ at $\sqrt{s}$ from 2.00 to 3.08 GeV at BESIII (2401.14711v1)

Published 26 Jan 2024 in hep-ex

Abstract: With the data samples taken at center-of-mass energies from 2.00 to 3.08 GeV with the BESIII detector at the BEPCII collider, a partial wave analysis on the $e{+}e{-}\rightarrow\pi{+}\pi{-}\pi{0}$ process is performed. The Born cross sections for $e{+}e{-}\rightarrow\pi{+}\pi{-}\pi{0}$ and its intermediate processes $e{+}e{-}\rightarrow\rho\pi$ and $\rho(1450)\pi$ are measured as functions of $\sqrt{s}$. The results for $e{+}e{-}\rightarrow\pi{+}\pi{-}\pi{0}$ are consistent with previous results measured with the initial state radiation method within one standard deviation, and improve the uncertainty by a factor of ten. By fitting the line shapes of the Born cross sections for the $e{+}e{-}\rightarrow\rho\pi$ and $\rho(1450)\pi$, a structure with mass $M = 2119\pm11\pm15\ {\rm MeV}/c2$ and width $\Gamma=69\pm30\pm5 {\rm MeV}$ is observed with a significance of $5.9\sigma$, where the first uncertainties are statistical and the second ones are systematic. This structure can be intepreteted as an excited $\omega$ state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. T. Aoyama et al., Physics Reports 887, 1 (2020).
  2. D. P. Aguillard et al. (Muon g−2𝑔2g-2italic_g - 2 Collaboration),   (2023), arXiv:2308.06230 [hep-ex] .
  3. G. W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006).
  4. B. Abi et al. (Muon g−2𝑔2g-2italic_g - 2 Collaboration), Phys. Rev. Lett. 126, 141801 (2021).
  5. S. Borsanyi et al., Nature 593, 51 (2021).
  6. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 072004 (2004).
  7. J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 104, 112003 (2021).
  8. M. N. Achasov et al. (SND Collaboration), Phys. Rev. D 63, 072002 (2001).
  9. M. N. Achasov et al. (SND Collaboration), Phys. Rev. D 66, 032001 (2002).
  10. M. N. Achasov et al. (SND Collaboration), Phys. Rev. D 68, 052006 (2003).
  11. M. N. Achasov et al. (SND Collaboration), J. Exp. Theor. Phys. 121, 27 (2015).
  12. M. N. Achasov et al. (SND Collaboration), Eur. Phys. J. C 80, 993 (2020).
  13. R. R. Akhmetshin et al. (CMD-2 Collaboration), Phys. Lett. B 578, 285 (2004).
  14. R. R. Akhmetshin et al. (CMD-2 Collaboration), Phys. Lett. B 642, 203 (2006).
  15. M. Ablikim et al. (BESIII Collaboration),   (2019a), arXiv:1912.11208 [hep-ex] .
  16. A. V. Anisovich et al., Phys. Lett. B 542, 19 (2002).
  17. D. V. Bugg, Eur. Phys. J. C 36, 161 (2004).
  18. M. Atkinson et al. (Omega Photon Collaboration), Z. Phys. C 38, 535 (1988).
  19. M. Ablikim et al. (BESIII Collaboration), J. High Energ. Phys. 2023, 111 (2023a).
  20. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 105, 032005 (2022).
  21. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 092005 (2007).
  22. J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 98, 112015 (2018).
  23. B. Zou and D. Bugg, Eur. Phys. J. A. 16, 537 (2003).
  24. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 103, 072007 (2021a).
  25. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 99, 032001 (2019b).
  26. M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 813, 136059 (2021b).
  27. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 124, 112001 (2020a).
  28. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 108, 032011 (2023b).
  29. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 104, 092014 (2021c).
  30. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 104, 032007 (2021d).
  31. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 102, 012008 (2020b).
  32. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100, 032009 (2019c).
  33. M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Meth. A 614, 345 (2010).
  34. S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).
  35. D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
  36. R. G. Ping, Chin. Phys. C 32, 599 (2008).
  37. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  38. E. Richter-Was, Phys. Lett. B 303, 163 (1993).
  39. R. G. Ping, Chin. Phys. C 38, 083001 (2014a).
  40. R. G. Ping et al., Chin. Phys. C 40, 113002 (2016).
  41. B. J. L. N. Berger and J. K. Wang, J. Phys. Conf. Ser. 219 (2010).
  42. F. von Hippel and C. Quigg, Phys. Rev. D 5 (1972).
  43. V. Weisskopf and J. Blatt, Theoretical Nuclear Physics (Courier Dover Publications, New York, 1991).
  44. G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21 (1968).
  45. F. James and M. Roos, Comput. Phys. Commun 10 (1975).
  46. M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 41, 063001 (2017).
  47. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 99, 011101 (2019d).
  48. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 87, 012002 (2013).
  49. R. G. Ping, Chin. Phys. C 38, 083001 (2014b).
  50. C. P. Shen and C. Z. Yuan, Chin. Phys. C 34, 1045 (2010).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.