Mapping between black-hole perturbation theory and numerical relativity II: gravitational-wave momentum (2401.14532v1)
Abstract: We report an approximate, non-trivial mapping of angular (linear) momentum in gravitational waves obtained from numerical relativity (NR) and adiabatic point-particle black hole perturbation theory (BHPT) in the comparable mass regime for quasi-circular, non-spinning binary black holes. This mapping involves two time-independent scaling parameters, $\alpha_{J}$ ($\alpha_{P}$) and $\beta_{J}$ ($\beta_{P}$), that adjust the BHPT angular (linear) momentum and the BHPT time respectively such a way that it aligns with NR angular (linear) momentum. Our findings indicate that this scaling mechanism works really well until close to the merger. In addition to the comparison of $\alpha_{J}$ ($\alpha_{P}$) with relevant values obtained from the waveform and flux scalings, we explore the mass ratio dependence of the scaling parameter $\alpha_{J}$ ($\alpha_{P}$). Finally, we investigate their possible connection to the missing finite size correction for the secondary black hole within the BHPT framework and the implication of these scalings on the remnant properties of the binary.
- Abdul H. Mroue et al., “Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy,” Phys. Rev. Lett. 111, 241104 (2013), arXiv:1304.6077 [gr-qc] .
- Michael Boyle et al., “The SXS Collaboration catalog of binary black hole simulations,” Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc] .
- James Healy, Carlos O. Lousto, Yosef Zlochower, and Manuela Campanelli, “The RIT binary black hole simulations catalog,” Class. Quant. Grav. 34, 224001 (2017), arXiv:1703.03423 [gr-qc] .
- James Healy, Carlos O. Lousto, Jacob Lange, Richard O’Shaughnessy, Yosef Zlochower, and Manuela Campanelli, “Second RIT binary black hole simulations catalog and its application to gravitational waves parameter estimation,” Phys. Rev. D 100, 024021 (2019), arXiv:1901.02553 [gr-qc] .
- James Healy and Carlos O. Lousto, “Third RIT binary black hole simulations catalog,” Phys. Rev. D 102, 104018 (2020), arXiv:2007.07910 [gr-qc] .
- James Healy and Carlos O. Lousto, “Fourth RIT binary black hole simulations catalog: Extension to eccentric orbits,” Phys. Rev. D 105, 124010 (2022), arXiv:2202.00018 [gr-qc] .
- Karan Jani, James Healy, James A. Clark, Lionel London, Pablo Laguna, and Deirdre Shoemaker, “Georgia Tech Catalog of Gravitational Waveforms,” Class. Quant. Grav. 33, 204001 (2016), arXiv:1605.03204 [gr-qc] .
- Eleanor Hamilton et al., “A catalogue of precessing black-hole-binary numerical-relativity simulations,” (2023), arXiv:2303.05419 [gr-qc] .
- Pranesh A. Sundararajan, Gaurav Khanna, and Scott A. Hughes, “Towards adiabatic waveforms for inspiral into Kerr black holes. I. A New model of the source for the time domain perturbation equation,” Phys. Rev. D 76, 104005 (2007), arXiv:gr-qc/0703028 .
- Pranesh A. Sundararajan, Gaurav Khanna, Scott A. Hughes, and Steve Drasco, “Towards adiabatic waveforms for inspiral into Kerr black holes: II. Dynamical sources and generic orbits,” Phys. Rev. D 78, 024022 (2008), arXiv:0803.0317 [gr-qc] .
- Pranesh A. Sundararajan, Gaurav Khanna, and Scott A. Hughes, “Binary black hole merger gravitational waves and recoil in the large mass ratio limit,” Phys. Rev. D 81, 104009 (2010), arXiv:1003.0485 [gr-qc] .
- Anil Zenginoglu and Gaurav Khanna, “Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime,” Phys. Rev. X 1, 021017 (2011), arXiv:1108.1816 [gr-qc] .
- Ryuichi Fujita and Hideyuki Tagoshi, “New numerical methods to evaluate homogeneous solutions of the Teukolsky equation,” Prog. Theor. Phys. 112, 415–450 (2004), arXiv:gr-qc/0410018 .
- Ryuichi Fujita and Hideyuki Tagoshi, “New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation II. Solutions of the Continued Fraction Equation,” Prog. Theor. Phys. 113, 1165–1182 (2005), arXiv:0904.3818 [gr-qc] .
- Shuhei Mano, Hisao Suzuki, and Eiichi Takasugi, “Analytic solutions of the Teukolsky equation and their low frequency expansions,” Prog. Theor. Phys. 95, 1079–1096 (1996), arXiv:gr-qc/9603020 .
- William William Thomas Throwe, High precision calculation of generic extreme mass ratio inspirals, Ph.D. thesis, Massachusetts Institute of Technology (2010).
- Stephen O’Sullivan and Scott A. Hughes, “Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits,” Phys. Rev. D 90, 124039 (2014), [Erratum: Phys.Rev.D 91, 109901 (2015)], arXiv:1407.6983 [gr-qc] .
- Steve Drasco and Scott A. Hughes, “Gravitational wave snapshots of generic extreme mass ratio inspirals,” Phys. Rev. D 73, 024027 (2006), [Erratum: Phys.Rev.D 88, 109905 (2013), Erratum: Phys.Rev.D 90, 109905 (2014)], arXiv:gr-qc/0509101 .
- Adam Pound and Barry Wardell, “Black hole perturbation theory and gravitational self-force,” (2021), arXiv:2101.04592 [gr-qc] .
- Jeremy Miller and Adam Pound, “Two-timescale evolution of extreme-mass-ratio inspirals: waveform generation scheme for quasicircular orbits in Schwarzschild spacetime,” Phys. Rev. D 103, 064048 (2021), arXiv:2006.11263 [gr-qc] .
- Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan, and Alexandre Le Tiec, “Gravitational waveforms for compact binaries from second-order self-force theory,” (2021), arXiv:2112.12265 [gr-qc] .
- Tousif Islam, Scott E. Field, Scott A. Hughes, Gaurav Khanna, Vijay Varma, Matthew Giesler, Mark A. Scheel, Lawrence E. Kidder, and Harald P. Pfeiffer, “Surrogate model for gravitational wave signals from nonspinning, comparable-to large-mass-ratio black hole binaries built on black hole perturbation theory waveforms calibrated to numerical relativity,” Phys. Rev. D 106, 104025 (2022), arXiv:2204.01972 [gr-qc] .
- Nur E. M. Rifat, Scott E. Field, Gaurav Khanna, and Vijay Varma, “Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries,” Phys. Rev. D 101, 081502 (2020), arXiv:1910.10473 [gr-qc] .
- Tousif Islam, Scott E. Field, and Gaurav Khanna, “Remnant black hole properties from numerical-relativity-informed perturbation theory and implications for waveform modelling,” (2023), arXiv:2301.07215 [gr-qc] .
- Tousif Islam, “Interplay between numerical-relativity and black hole perturbation theory in the intermediate-mass-ratio regime,” (2023a), arXiv:2306.08771 [gr-qc] .
- Tousif Islam and Gaurav Khanna, “Interplay between numerical relativity and perturbation theory : finite size effects,” (2023a), arXiv:2306.08767 [gr-qc] .
- Tousif Islam and Gaurav Khanna, “On the approximate relation between black-hole perturbation theory and numerical relativity,” (2023b), arXiv:2307.03155 [gr-qc] .
- Carlos O. Lousto and James Healy, “Exploring the Small Mass Ratio Binary Black Hole Merger via Zeno’s Dichotomy Approach,” Phys. Rev. Lett. 125, 191102 (2020), arXiv:2006.04818 [gr-qc] .
- Carlos O. Lousto and James Healy, “Study of the Intermediate Mass Ratio Black Hole Binary Merger up to 1000:1 with Numerical Relativity,” (2022), arXiv:2203.08831 [gr-qc] .
- Carlos O. Lousto, Hiroyuki Nakano, Yosef Zlochower, and Manuela Campanelli, “Intermediate Mass Ratio Black Hole Binaries: Numerical Relativity meets Perturbation Theory,” Phys. Rev. Lett. 104, 211101 (2010a), arXiv:1001.2316 [gr-qc] .
- Carlos O. Lousto, Hiroyuki Nakano, Yosef Zlochower, and Manuela Campanelli, “Intermediate-mass-ratio black hole binaries: Intertwining numerical and perturbative techniques,” Phys. Rev. D 82, 104057 (2010b), arXiv:1008.4360 [gr-qc] .
- Hiroyuki Nakano, Yosef Zlochower, Carlos O. Lousto, and Manuela Campanelli, “Intermediate-mass-ratio black hole binaries II: Modeling Trajectories and Gravitational Waveforms,” Phys. Rev. D 84, 124006 (2011), arXiv:1108.4421 [gr-qc] .
- Sergi Navarro Albalat, Aaron Zimmerman, Matthew Giesler, and Mark A. Scheel, “Success of the small mass-ratio approximation during the final orbits of binary black hole simulations,” Phys. Rev. D 107, 084021 (2023), arXiv:2207.04066 [gr-qc] .
- Sergi Navarro Albalat, Aaron Zimmerman, Matthew Giesler, and Mark A. Scheel, “Redshift factor and the small mass-ratio limit in binary black hole simulations,” Phys. Rev. D 106, 044006 (2022), arXiv:2203.04893 [gr-qc] .
- Antoni Ramos-Buades, Maarten van de Meent, Harald P. Pfeiffer, Hannes R. Rüter, Mark A. Scheel, Michael Boyle, and Lawrence E. Kidder, “Eccentric binary black holes: Comparing numerical relativity and small mass-ratio perturbation theory,” Phys. Rev. D 106, 124040 (2022), arXiv:2209.03390 [gr-qc] .
- Maarten van de Meent and Harald P. Pfeiffer, “Intermediate mass-ratio black hole binaries: Applicability of small mass-ratio perturbation theory,” Phys. Rev. Lett. 125, 181101 (2020), arXiv:2006.12036 [gr-qc] .
- Alexandre Le Tiec, “The Overlap of Numerical Relativity, Perturbation Theory and Post-Newtonian Theory in the Binary Black Hole Problem,” Int. J. Mod. Phys. D 23, 1430022 (2014), arXiv:1408.5505 [gr-qc] .
- Alexandre Le Tiec et al., “Periastron Advance in Spinning Black Hole Binaries: Gravitational Self-Force from Numerical Relativity,” Phys. Rev. D 88, 124027 (2013), arXiv:1309.0541 [gr-qc] .
- Alexandre Le Tiec, Enrico Barausse, and Alessandra Buonanno, “Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems,” Phys. Rev. Lett. 108, 131103 (2012a), arXiv:1111.5609 [gr-qc] .
- Alexandre Le Tiec, “Perturbative, Post-Newtonian, and General Relativistic Dynamics of Black Hole Binaries,” in 46th Rencontres de Moriond on Gravitational Waves and Experimental Gravity (2011) pp. 81–84, arXiv:1109.6848 [gr-qc] .
- Tousif Islam, “Mapping between black-hole perturbation theory and numerical relativity: gravitational-wave energy flux,” (2023b), arXiv:2310.05743 [gr-qc] .
- Scott Field, Tousif Islam, Gaurav Khanna, Nur Rifat, and Vijay Varma, “BHPTNRSurrogate,” http://bhptoolkit.org/BHPTNRSurrogate/.
- “Black Hole Perturbation Toolkit,” (bhptoolkit.org).
- Davide Gerosa, François Hébert, and Leo C. Stein, “Black-hole kicks from numerical-relativity surrogate models,” Phys. Rev. D 97, 104049 (2018), arXiv:1802.04276 [gr-qc] .
- Tousif Islam, Scott Field, and Gaurav Khanna, “BHPTNRSurrogate,” https://pypi.org/project/gw-remnant/.
- Alexandre Le Tiec, Luc Blanchet, and Bernard F. Whiting, “The First Law of Binary Black Hole Mechanics in General Relativity and Post-Newtonian Theory,” Phys. Rev. D 85, 064039 (2012b), arXiv:1111.5378 [gr-qc] .
- “scipy.optimize.cruve_fit,” .
- Richard H. Price and Gaurav Khanna, “Issues in the comparison of particle perturbations and numerical relativity for binary black hole mergers,” Phys. Rev. D 106, 084037 (2022), arXiv:2207.08514 [gr-qc] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.