Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Topological fingerprints in Liouvillian gaps (2401.13732v2)

Published 24 Jan 2024 in cond-mat.str-el, cond-mat.mes-hall, cond-mat.stat-mech, and quant-ph

Abstract: Topology in many-body physics usually emerges as a feature of equilibrium quantum states. We show that topological fingerprints can also appear in the relaxation rates of open quantum systems. To demonstrate this we consider one of the simplest models that has two topologically distinct phases in its ground state: the Kitaev chain model for the $p$-wave superconductor. After introducing dissipation to this model we estimate the Liouvillian gap in both strong and weak dissipative limits. Our results show that a non-zero superconducting pairing opens a Liouvillian gap that remains open in the limit of infinite system size. At strong dissipation this gap is essentially unaffected by the topology of the underlying Hamiltonian ground state. In contrast, when dissipation is weak, the topological phase of the Hamiltonian ground state plays a crucial role in determining the character of the Liouvillian gap. We find, for example, that in the topological phase this gap is completely immune to changes in the chemical potential. On the other hand, in the non-topological phase the Liouvillian gap is suppressed by a large chemical potential.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
  2. G. Moore and N. Read, Nuclear Physics B 360, 362 (1991).
  3. X. liang Qi and S.-C. Zhang, Physics Today 63, 33 (2010).
  4. A. Y. Kitaev, Annals of Physics 303, 2 (2003).
  5. A. Y. Kitaev, Annals of Physics 321, 2 (2006).
  6. M. B. Hastings and X.-G. Wen, Phys. Rev. B 72, 045141 (2005).
  7. M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
  8. A. Kitaev and L. Kong, Communications in Mathematical Physics 313, 351 (2012).
  9. T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
  10. M. S. Rudner and N. H. Lindner, Nature Reviews Physics 2, 229 (2020).
  11. S. Mathey and S. Diehl, Phys. Rev. B 102, 134307 (2020).
  12. Z.-M. Huang, X.-Q. Sun,  and S. Diehl, “Topological gauge theory for mixed dirac stationary states in all dimensions,”  (2021), arXiv:2109.06891 [cond-mat.stat-mech] .
  13. T. Prosen, New Journal of Physics 10, 043026 (2008).
  14. T. Prosen and I. Pižorn, Phys. Rev. Lett. 101, 105701 (2008).
  15. G. Kells, Phys. Rev. B 92, 155434 (2015).
  16. V. Eisler, Journal of Statistical Mechanics: Theory and Experiment 2011, P06007 (2011).
  17. N. Shibata and H. Katsura, Phys. Rev. B 99, 174303 (2019a).
  18. N. Shibata and H. Katsura, Phys. Rev. B 99, 224432 (2019b).
  19. T. Yoshimura and L. Sá, “Robustness of quantum chaos and anomalous relaxation in open quantum circuits,”  (2023), arXiv:2312.00649 [cond-mat.stat-mech] .
  20. A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
  21. G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
  22. S. Sarkar and Y. Dubi, The Journal of Physical Chemistry C 124, 15115 (2020), https://doi.org/10.1021/acs.jpcc.0c04581 .
  23. S. Sarkar and Y. Dubi, Communications Physics 5, 155 (2022a).
  24. S. Sarkar and Y. Dubi, Nano Letters 22, 4445 (2022b), pMID: 35580301, https://doi.org/10.1021/acs.nanolett.2c00976 .
  25. T. Kato, Progress of Theoretical Physics 4, 514 (1949).
  26. C. Bloch, Nuclear Physics 6, 329 (1958).
  27. C. Bloch and J. Horowitz, Nuclear Physics 8, 91 (1958).
  28. A. Messiah, Quantum Mechanics (North-Holland Publishing Company, 1961).
  29. P. Löwdin, Journal of Mathematical Physics 3, 969 (1962).
  30. C. E. Soliverez, Journal of Physics C: Solid State Physics 2, 2161 (1969).
  31. T. Koma and B. Nachtergaele, Letters in Mathematical Physics 40, 1 (1997).
  32. F. Franchini, “The xxz chain,” in An Introduction to Integrable Techniques for One-Dimensional Quantum Systems (Springer International Publishing, Cham, 2017) pp. 71–92.
  33. T. Stanescu, Introduction to Topological Quantum Matter & Quantum Computation (CRC Press, 2016).
  34. D. Poulin, Phys. Rev. Lett. 104, 190401 (2010).
  35. B. Nachtergaele, A. Vershynina,  and V. A. Zagrebnov, “Lieb-robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics,”  (2011), arXiv:1103.1122 [math-ph] .
  36. M. J. Kastoryano and J. Eisert, Journal of Mathematical Physics 54, 102201 (2013), https://doi.org/10.1063/1.4822481 .
  37. M. Žnidarič, Phys. Rev. E 92, 042143 (2015).
  38. T. Mori, Phys. Rev. B 109, 064311 (2024).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: