Topological fingerprints in Liouvillian gaps (2401.13732v2)
Abstract: Topology in many-body physics usually emerges as a feature of equilibrium quantum states. We show that topological fingerprints can also appear in the relaxation rates of open quantum systems. To demonstrate this we consider one of the simplest models that has two topologically distinct phases in its ground state: the Kitaev chain model for the $p$-wave superconductor. After introducing dissipation to this model we estimate the Liouvillian gap in both strong and weak dissipative limits. Our results show that a non-zero superconducting pairing opens a Liouvillian gap that remains open in the limit of infinite system size. At strong dissipation this gap is essentially unaffected by the topology of the underlying Hamiltonian ground state. In contrast, when dissipation is weak, the topological phase of the Hamiltonian ground state plays a crucial role in determining the character of the Liouvillian gap. We find, for example, that in the topological phase this gap is completely immune to changes in the chemical potential. On the other hand, in the non-topological phase the Liouvillian gap is suppressed by a large chemical potential.
- X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
- G. Moore and N. Read, Nuclear Physics B 360, 362 (1991).
- X. liang Qi and S.-C. Zhang, Physics Today 63, 33 (2010).
- A. Y. Kitaev, Annals of Physics 303, 2 (2003).
- A. Y. Kitaev, Annals of Physics 321, 2 (2006).
- M. B. Hastings and X.-G. Wen, Phys. Rev. B 72, 045141 (2005).
- M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
- A. Kitaev and L. Kong, Communications in Mathematical Physics 313, 351 (2012).
- T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
- M. S. Rudner and N. H. Lindner, Nature Reviews Physics 2, 229 (2020).
- S. Mathey and S. Diehl, Phys. Rev. B 102, 134307 (2020).
- Z.-M. Huang, X.-Q. Sun, and S. Diehl, “Topological gauge theory for mixed dirac stationary states in all dimensions,” (2021), arXiv:2109.06891 [cond-mat.stat-mech] .
- T. Prosen, New Journal of Physics 10, 043026 (2008).
- T. Prosen and I. Pižorn, Phys. Rev. Lett. 101, 105701 (2008).
- G. Kells, Phys. Rev. B 92, 155434 (2015).
- V. Eisler, Journal of Statistical Mechanics: Theory and Experiment 2011, P06007 (2011).
- N. Shibata and H. Katsura, Phys. Rev. B 99, 174303 (2019a).
- N. Shibata and H. Katsura, Phys. Rev. B 99, 224432 (2019b).
- T. Yoshimura and L. Sá, “Robustness of quantum chaos and anomalous relaxation in open quantum circuits,” (2023), arXiv:2312.00649 [cond-mat.stat-mech] .
- A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
- G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
- S. Sarkar and Y. Dubi, The Journal of Physical Chemistry C 124, 15115 (2020), https://doi.org/10.1021/acs.jpcc.0c04581 .
- S. Sarkar and Y. Dubi, Communications Physics 5, 155 (2022a).
- S. Sarkar and Y. Dubi, Nano Letters 22, 4445 (2022b), pMID: 35580301, https://doi.org/10.1021/acs.nanolett.2c00976 .
- T. Kato, Progress of Theoretical Physics 4, 514 (1949).
- C. Bloch, Nuclear Physics 6, 329 (1958).
- C. Bloch and J. Horowitz, Nuclear Physics 8, 91 (1958).
- A. Messiah, Quantum Mechanics (North-Holland Publishing Company, 1961).
- P. Löwdin, Journal of Mathematical Physics 3, 969 (1962).
- C. E. Soliverez, Journal of Physics C: Solid State Physics 2, 2161 (1969).
- T. Koma and B. Nachtergaele, Letters in Mathematical Physics 40, 1 (1997).
- F. Franchini, “The xxz chain,” in An Introduction to Integrable Techniques for One-Dimensional Quantum Systems (Springer International Publishing, Cham, 2017) pp. 71–92.
- T. Stanescu, Introduction to Topological Quantum Matter & Quantum Computation (CRC Press, 2016).
- D. Poulin, Phys. Rev. Lett. 104, 190401 (2010).
- B. Nachtergaele, A. Vershynina, and V. A. Zagrebnov, “Lieb-robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics,” (2011), arXiv:1103.1122 [math-ph] .
- M. J. Kastoryano and J. Eisert, Journal of Mathematical Physics 54, 102201 (2013), https://doi.org/10.1063/1.4822481 .
- M. Žnidarič, Phys. Rev. E 92, 042143 (2015).
- T. Mori, Phys. Rev. B 109, 064311 (2024).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.