Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

K-motives, Springer Theory and the Local Langlands Correspondence (2401.13052v2)

Published 23 Jan 2024 in math.RT, math.AG, and math.KT

Abstract: We construct a geometric realization of categories of representations of affine Hecke algebras and split reductive $p$-adic groups via a $K$-motivic Springer theory. We suggest a connection to the coherent Springer theory of Ben-Zvi, Chen, Helm, and Nadler through a categorical Chern character and outline results and conjectures on $K$-motives within the Langlands program. To achieve our results, we introduce a six functor formalism for reduced $K$-motives applicable to linearly reductive stacks and establish formality for categories of Springer $K$-motives. We work within a broader framework of Hecke algebras derived from Springer data. This makes the results applicable, for example, to the ($K$-theoretic) quiver Hecke and Schur algebra. Moreover, we relate our constructions to prior geometric realizations for graded Hecke algebras.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. Jonas Antor “Formality in the Deligne-Langlands Correspondence”, 2023 arXiv: http://arxiv.org/abs/2302.11010
  2. Ko Aoki “The Weight Complex Functor Is Symmetric Monoidal” In Advances in Mathematics 368, 2020, pp. 107145 DOI: 10.1016/j.aim.2020.107145
  3. “Equivariant K𝐾Kitalic_K-Theory and Completion” In Journal of Differential Geometry 3.1-2 Lehigh University, 1969, pp. 1–18 DOI: 10.4310/jdg/1214428815
  4. J. Ayoub “Note Sur Les Opérations de Grothendieck et La Réalisation de Betti” In Journal of the Institute of Mathematics of Jussieu, 2009 DOI: 10.1017/S1474748009000127
  5. A.A. Beilinson, J. Bernstein and Pierre Deligne “Faisceaux pervers” In Analyse et topologie sur les espaces singuliers. CIRM, 6 - 10 juillet 1981. (Actes du Colloque de Luminy 1981). I, 1982 URL: https://zbmath.org/?q=an%3A0536.14011
  6. “Between Coherent and Constructible Local Langlands Correspondences”, 2023 arXiv: http://arxiv.org/abs/2302.00039
  7. “Coherent Springer Theory and the Categorical Deligne-Langlands Correspondence” In Inventiones mathematicae, 2023 DOI: 10.1007/s00222-023-01224-2
  8. Alexander Beilinson, Victor Ginzburg and Wolfgang Soergel “Koszul Duality Patterns in Representation Theory” In Journal of the American Mathematical Society 9.2, 1996, pp. 473–527 DOI: 10.1090/S0894-0347-96-00192-0
  9. “Equivariant Sheaves and Functors”, Lecture Notes in Mathematics 1578 Berlin ; New York: Springer-Verlag, 1994
  10. Mikhail V. Bondarko “Weight Structures vs. t-Structures; Weight Filtrations, Spectral Sequences, and Complexes (for Motives and in General)” In Journal of K-Theory 6.3 Cambridge University Press, 2010, pp. 387–504 DOI: 10.1017/is010012005jkt083
  11. “On Koszul Duality for Kac-Moody Groups” In Representation Theory 17 American Mathematical Society (AMS), Providence, RI, 2013, pp. 1–98 DOI: 10.1090/S1088-4165-2013-00421-1
  12. “Étale Motives” In Compositio Mathematica 152.3, 2016, pp. 556–666 DOI: 10.1112/S0010437X15007459
  13. “Triangulated Categories of Mixed Motives”, Springer Monogr. Math. Cham: Springer, 2019 DOI: 10.1007/978-3-030-33242-6
  14. “Representation Theory and Complex Geometry” Boston: Birkhäuser Boston, 2010 DOI: 10.1007/978-0-8176-4938-8
  15. “Quantum K-theoretic Geometric Satake: The SLnsubscriptSL𝑛\operatorname{SL}_{n}roman_SL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT Case” In Compositio Mathematica 154.2 London Mathematical Society, 2018, pp. 275–327 DOI: 10.1112/S0010437X17007564
  16. Frédéric Déglise “Bivariant Theories in Motivic Stable Homotopy” In Documenta Mathematica 23, 2018, pp. 997–1076 DOI: 10.4171/dm/641
  17. Frédéric Déglise “Orientation Theory in Arithmetic Geometry” In \(K\)-Theory. Proceedings of the International Colloquium, Mumbai, 2016 New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research, 2019, pp. 239–347
  18. C. De Concini, G. Lusztig and C. Procesi “Homology of the Zero-Set of a Nilpotent Vector Field on a Flag Manifold” In Journal of the American Mathematical Society 1.1 American Mathematical Society, 1988, pp. 15–34 DOI: 10.2307/1990965
  19. Jens Niklas Eberhardt “K-Motives and Koszul Duality”, 2019 arXiv: http://arxiv.org/abs/1909.11151
  20. Jens Niklas Eberhardt “Springer Motives” In Proceedings of the American Mathematical Society 149.5, 2021, pp. 1845–1856 DOI: 10.1090/proc/15290
  21. Jens Niklas Eberhardt “K-Theory Soergel Bimodules”, 2022 arXiv: http://arxiv.org/abs/2208.01665
  22. Jens Niklas Eberhardt and Catharina Stroppel “Motivic Springer Theory” In Indagationes Mathematicae 33.1, Special Issue to the Memory of T.A. Springer, 2022, pp. 190–217 DOI: 10.1016/j.indag.2021.11.004
  23. Jens Niklas Eberhardt and Jakob Scholbach “Integral Motivic Sheaves and Geometric Representation Theory” In Advances in Mathematics 412, 2023, pp. 108811 DOI: 10.1016/j.aim.2022.108811
  24. Jin Fangzhou “Borel–Moore Motivic Homology and Weight Structure on Mixed Motives” In Mathematische Zeitschrift 283.3, 2016, pp. 1149–1183 DOI: 10.1007/s00209-016-1636-7
  25. Eugen Hellmann “On the Derived Category of the Iwahori-Hecke Algebra”, 2021 DOI: 10.48550/arXiv.2006.03013
  26. “Vanishing Theorems for the Negative K𝐾Kitalic_K-Theory of Stacks” In Annals of K-Theory 4.3 MSP, 2019, pp. 439–472 DOI: 10.2140/akt.2019.4.439
  27. Marc Hoyois “The Six Operations in Equivariant Motivic Homotopy Theory” In Advances in Mathematics 305, 2017, pp. 197–279 DOI: 10.1016/j.aim.2016.09.031
  28. Marc Hoyois “Cdh Descent in Equivariant Homotopy K𝐾Kitalic_K-Theory” In Documenta Mathematica 25, 2020, pp. 457–482 DOI: 10.4171/dm/754
  29. Marc Hoyois, Sarah Scherotzke and Nicolò Sibilla “Higher Traces, Noncommutative Motives, and the Categorified Chern Character” In Advances in Mathematics 309, 2017, pp. 97–154 DOI: 10.1016/j.aim.2017.01.008
  30. “A Diagrammatic Approach to Categorification of Quantum Groups I” In Representation Theory of the American Mathematical Society 13.14, 2009, pp. 309–347 DOI: 10.1090/S1088-4165-09-00346-X
  31. “Proof of the Deligne-Langlands Conjecture for Hecke Algebras” In Inventiones mathematicae 87.1, 1987, pp. 153–215 DOI: 10.1007/BF01389157
  32. Adeel A. Khan and Charanya Ravi “Generalized Cohomology Theories for Algebraic Stacks”, 2022 DOI: 10.48550/arXiv.2106.15001
  33. George Lusztig “Cuspidal local systems and graded Hecke algebras, I” In Publications Mathématiques de l’IHÉS 67, 1988, pp. 145–202 URL: http://www.numdam.org/item/PMIHES_1988__67__145_0/
  34. George Lusztig “Affine Hecke Algebras and Their Graded Version” In Journal of the American Mathematical Society 2.3 American Mathematical Society, 1989, pp. 599–635 DOI: 10.2307/1990945
  35. G. Lusztig “Bases in Equivariant K𝐾Kitalic_K-Theory” In Representation Theory 2, 1998, pp. 298–369 DOI: 10.1090/S1088-4165-98-00054-5
  36. Laura Rider “Formality for the Nilpotent Cone and a Derived Springer Correspondence” In Advances in Mathematics 235, 2013, pp. 208–236 DOI: 10.1016/j.aim.2012.12.001
  37. Joël Riou “Algebraic K-theory, A1-homotopy and Riemann–Roch Theorems” In Journal of Topology 3.2, 2010, pp. 229–264 DOI: 10.1112/jtopol/jtq005
  38. Raphael Rouquier “2-Kac-Moody Algebras”, 2008 arXiv: http://arxiv.org/abs/0812.5023
  39. “The Intersection Motive of the Moduli Stack of Shtukas” In Forum of Mathematics, Sigma 8 Cambridge University Press, Cambridge, 2020, pp. 99 DOI: 10.1017/fms.2019.32
  40. Julia Sauter “A Survey on Springer Theory”, 2013 arXiv: http://arxiv.org/abs/1307.0973
  41. Julia Sauter “Cell Decompositions of Quiver Flag Varieties for Nilpotent Representations of the Oriented Cycle”, 2016 arXiv: http://arxiv.org/abs/1509.08026
  42. Wolfgang Soergel “Langlands’ Philosophy and Koszul Duality” In Algebra — Representation Theory Dordrecht: Springer Netherlands, 2001, pp. 379–414 DOI: 10.1007/978-94-010-0814-3_17
  43. Wolfgang Soergel “Kategorie O , Perverse Garben Und Moduln Uber Den Koinvariantez Zur Weylgruppe” In Journal of the American Mathematical Society 3.2, 1990, pp. 421 DOI: 10.2307/1990960
  44. Vladimir Sosnilo “Theorem of the Heart in Negative K-theory for Weight Structures”, 2017 arXiv: http://arxiv.org/abs/1705.07995
  45. Wolfgang Soergel, Rahbar Virk and Matthias Wendt “Equivariant Motives and Geometric Representation Theory. (with an Appendix by F. Hörmann and M. Wendt)”, 2018 arXiv: http://arxiv.org/abs/1809.05480
  46. “Quiver Schur Algebras and Q-Fock Space”, 2014 arXiv: http://arxiv.org/abs/1110.1115
  47. Jeremy Taylor “Uncompleting Soergel’s Endomorphismensatz”, 2023 arXiv: http://arxiv.org/abs/2305.03033
  48. R.W. Thomason “XX. Algebraic K-Theory of Group Scheme Actions” In XX. Algebraic K-Theory of Group Scheme Actions Princeton University Press, 2016, pp. 539–563 DOI: 10.1515/9781400882113-021
  49. R.W. Thomason “Lefschetz-Riemann-Roch Theorem and Coherent Trace Formula” In Inventiones mathematicae 85.3, 1986, pp. 515–543 DOI: 10.1007/BF01390328
  50. R.W. Thomason “Equivariant Algebraic vs. Topological K-homology Atiyah-Segal-style” In Duke Mathematical Journal 56.3 Duke University Press, 1988, pp. 589–636 DOI: 10.1215/S0012-7094-88-05624-4
  51. Burt Totaro “The Chow Ring of a Classifying Space” In Proceedings of Symposia in Pure Mathematics 67 Providence, Rhode Island: American Mathematical Society, 1999, pp. 249–281 DOI: 10.1090/pspum/067/1743244
  52. “Canonical Bases and KLR-algebras” In Journal für die Reine und Angewandte Mathematik 659, 2011, pp. 67–100 DOI: 10.1515/CRELLE.2011.068
  53. Xiaoxiang Zhou “Geometry of Quiver Flag Varieties”, 2023 URL: https://github.com/ramified/master_thesis/raw/main/master_thesis_Xiaoxiang_Zhou.pdf
  54. Xinwen Zhu “Coherent Sheaves on the Stack of Langlands Parameters”, 2021 DOI: 10.48550/arXiv.2008.02998

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube