Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Extremal Tsirelson inequalities (2401.12791v2)

Published 23 Jan 2024 in quant-ph

Abstract: It is well-known that the set of statistics that can be observed in a Bell-type experiment is limited by quantum theory. Unfortunately, tools are missing to identify the precise boundary of this set. Here, we propose to study the set of quantum statistics from a dual perspective. By considering all Bell expressions saturated by a given realization, we show that the CHSH expression can be decomposed in terms of extremal Tsirelson inequalities that we identify. This brings novel insight into the geometry of the quantum set in the (2,2,2) scenario. Furthermore, this allows us to identify all the Bell expressions that are able to self-test the Tsirelson realization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. L. Hardy, Physical Review Letters 71, 1665 (1993).
  2. D. Mayers and A. Yao, Self testing quantum apparatus (2004), arxiv:quant-ph/0307205 .
  3. M. Navascués, S. Pironio, and A. Acín, Physical Review Letters 98, 010401 (2007).
  4. M. Navascués, S. Pironio, and A. Acín, New Journal of Physics 10, 073013 (2008).
  5. L. Masanes, Necessary and sufficient condition for quantum-generated correlations (2003), arxiv:quant-ph/0309137 .
  6. S. Ishizaka, Physical Review A 97, 050102 (2018).
  7. A. Mikos-Nuszkiewicz and J. Kaniewski, Extremal points of the quantum set in the chsh scenario: conjectured analytical solution (2023), arXiv:2302.10658 [quant-ph] .
  8. B. S. Tsirel’son, Journal of Soviet Mathematics 36, 557 (1987).
  9. S. Wehner, Phys. Rev. A 73, 022110 (2006).
  10. N. Miguel and W. Harald, Proc. R. Soc. A 466, 881–890 (2010).
  11. I. Šupić and J. Bowles, Quantum 4, 337 (2020).
  12. T. Fritz, Journal of Mathematical Physics 53, 072202 (2012).
  13. L. J. Landau, Foundations of Physics 18, 449 (1988).
  14. V. Barizien, P. Sekatski, and J.-D. Bancal, Custom bell inequalities from formal sums of squares (2023), arXiv:2308.08601 [quant-ph] .
  15. L. Wooltorton, P. Brown, and R. Colbeck, Device-independent quantum key distribution with arbitrarily small nonlocality (2023), arXiv:2309.09650 [quant-ph] .
  16. W. Slofstra, Forum of Mathematics, Pi 7, e1 (2019).
  17. D. Collins and N. Gisin, Journal of Physics A: Mathematical and General 37, 1775 (2004).
  18. B. S. Cirel’son, Letters in Mathematical Physics 4, 93 (1980).
  19. K. F. Pál, T. Vértesi, and M. Navascués, Phys. Rev. A 90, 042340 (2014).
  20. M. Ioannou and D. Rosset, Noncommutative polynomial optimization under symmetry (2022), arXiv:2112.10803 [quant-ph] .
  21. Y.-C. Liang and A. C. Doherty, Phys. Rev. A 75, 042103 (2007).
  22. C. Bamps and S. Pironio, Physical Review A 91, 10.1103/physreva.91.052111 (2015).
  23. R. T. Rockafellar, Convex Analysis (Princeton University Press, 1970).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.