Multicausal transport: barycenters and dynamic matching
Abstract: We introduce a multivariate version of causal transport, which we name multicausal transport, involving several filtered processes among which causality constraints are imposed. Subsequently, we consider the barycenter problem for stochastic processes with respect to causal and bicausal optimal transport, and study its connection to specific multicausal transport problems. Attainment and duality of the aforementioned problems are provided. As an application, we study a matching problem in a dynamic setting where agent types evolve over time. We link this to a causal barycenter problem and thereby show existence of equilibria.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.