Converging Many-Body Perturbation Theory for Ab Initio Nuclear Structure: II. Brillouin-Wigner Perturbation Series for Open-Shell Nuclei (2401.12691v1)
Abstract: Brillouin-Wigner (BW) perturbation theory is developed for both ground and excited states of open-shell nuclei. We show that with optimal partitioning of the many-body Hamiltonian proposed earlier by the authors [Z. Li and N. Smirnova, arXiv:2306.13629], one can redefine the BW perturbation series for a given state of the effective Hamiltonian in a small P-space to be converging under the condition that the energy of this state is below the lowest eigenvalue of the Hamiltonian matrix block belonging to the complement of the P-space, characterized by the same good quantum numbers as the state under consideration. Specifically, the BW perturbative calculations for the lowest $J\pi$ states are always converging due to the variational principle. This property does hold for both soft and hard internucleon interactions in the harmonic oscillator basis. To illustrate this method and check the convergence behavior, we present numerical studies of low-energy spectra of ${5,6,7}$Li using the Daejeon16 and bare N3LO potentials.
- H. Hergert, Front. Phys. 8, 379 (2020).
- E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
- R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).
- S. Bogner, R. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010).
- L. D. Faddeev, Sov. Phys. JEPT 12, 1014 (1961).
- O. Yakubowsky, Sov. J. Nucl. Phys. 5, 937 (1967).
- J. L. Ballot and M. Fabre de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980).
- N. Barnea, W. Leidemann, and G. Orlandini, Nucl. Phys. A 650, 427 (1999).
- S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).
- B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).
- A. Tichai, R. Roth, and T. Duguet, Front. Phys. 8, 164 (2020).
- W. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004).
- K. A. Brueckner, Phys. Rev. 100, 36 (1955).
- K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 (1955).
- H. A. Bethe, Phys. Rev. 103, 1353 (1956).
- J. Goldstone, Proc. Roy. Soc. A 239, 267 (1957).
- T. T. S. Kuo and E. Osnes, Folded-Diagram Theory of the Effective Interaction in Nuclei, Atoms and Molecules (Springer-Verlag, Berlin/Heidelberg, 1990).
- M. Hjorth-Jensen, T. T. Kuo, and E. Osnes, Phys. Rep. 261, 125 (1995).
- H. P. Kelly, Phys. Rev. 131, 684 (1963).
- H. P. Kelly, Phys. Rev. 134, A1450 (1964a).
- H. P. Kelly, Phys. Rev. 136, B896 (1964b).
- R. J. Bartlett and D. M. Silver, Chem. Phys. Lett. 29, 199 (1974a).
- R. J. Bartlett and D. M. Silver, Int. J. Quantum Chem. 8, 271 (1974b).
- R. J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981).
- I. Shavitt and R. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009).
- T. Kuo, S. Lee, and K. Ratcliff, Nucl. Phys. A 176, 65 (1971).
- P. J. Ellis and E. Osnes, Rev. Mod. Phys. 49, 777 (1977).
- P.-O. Löwdin, Phys. Rev. 139, A357 (1965).
- T. M. Perrine, R. K. Chaudhuri, and K. F. Freed, Int. J. Quantum Chem. 105, 18 (2005).
- R. Roth and J. Langhammer, Phys. Lett. B 683, 272 (2010).
- J. Langhammer, R. Roth, and C. Stumpf, Phys. Rev. C 86, 054315 (2012).
- Z. Li and N. A. Smirnova, arXiv preprint arXiv:2306.13629 (2023).
- C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).
- P.-O. Löwdin, J. Math. Phys. 3, 969 (1962).
- R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge University Press, 2013).
- T. Schucan and H. Weidenmüller, Ann. Phys. (N.Y.) 73, 108 (1972).
- T. H. Schucan and H. A. Weidenmüller, Ann. Phys. (N.Y.) 76, 483 (1973).
- D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
- D. Entem and R. Machleidt, Phys. Lett. B 524, 93 (2002).
- C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.