Papers
Topics
Authors
Recent
2000 character limit reached

Quantum-enhanced Green's function Monte Carlo for excited states of nuclear shell model (2401.11521v1)

Published 21 Jan 2024 in quant-ph

Abstract: We present a hybrid quantum-classical Green's function Monte Carlo (GFMC) algorithm for estimating the excited states of the nuclear shell model. The conventional GFMC method, widely used to find the ground state of a quantum many-body system, is plagued by the sign problem, which leads to an exponentially increasing variance with the growth of system size and evolution time. This issue is typically mitigated by applying classical constraints but at the cost of introducing bias. Our approach uses quantum subspace diagonalization (QSD) on a quantum computer to prepare a quantum trial state, replacing the classical trial state in the GFMC process. We also incorporated a modified classical shadow technique in the implementation of QSD to optimize quantum resource utilization. Besides, we extend our hybrid GFMC algorithm to find the excited states of a given quantum system. Numerical results suggest our method largely enhances accuracy in determining excited state energies, offering an improvement over the conventional method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. S. R. White, Physical review letters 69, 2863 (1992).
  2. S. R. White and A. E. Feiguin, Physical review letters 93, 076401 (2004).
  3. S. Wouters and D. Van Neck, The European Physical Journal D 68, 1 (2014).
  4. A. Baiardi and M. Reiher, The Journal of Chemical Physics 152 (2020).
  5. J. W. Negele, Reviews of Modern Physics 54, 913 (1982).
  6. M. Troyer and U.-J. Wiese, Physical review letters 94, 170201 (2005).
  7. T. Cheon, Progress of theoretical physics 96, 971 (1996).
  8. S. Sorella and L. Capriotti, Physical Review B 61, 2599 (2000).
  9. N. S. Blunt, Journal of Chemical Theory and Computation 17, 6092 (2021).
  10. X. Xu and Y. Li, Quantum 7, 1072 (2023).
  11. M. A. Nielsen and I. L. Chuang, Phys. Today 54, 60 (2001).
  12. A. Y. Kitaev, arXiv preprint quant-ph/9511026  (1995).
  13. J. Preskill, Quantum 2, 79 (2018).
  14. X. Roca-Maza and N. Paar, Progress in Particle and Nuclear Physics 101, 96 (2018).
  15. M. Ramsey-Musolf, Physical Review D 62, 056009 (2000).
  16. E. Adelberger and W. Haxion, Annual Review of Nuclear and Particle Science 35, 501 (1985).
  17. H. Ejiri, Physics Reports 338, 265 (2000).
  18. C. L. Cortes and S. K. Gray, Physical Review A 105, 022417 (2022).
  19. H. F. Trotter, Proceedings of the American Mathematical Society 10, 545 (1959).
  20. S. Lloyd, Science 273, 1073 (1996).
  21. B. A. Brown and W. Richter, Physical Review C 74, 034315 (2006).
  22. B. Preedom and B. Wildenthal, Physical Review C 6, 1633 (1972).
  23. F. Becca and S. Sorella, Quantum Monte Carlo approaches for correlated systems (Cambridge University Press, 2017).
  24. S. Sorella, Physical review letters 80, 4558 (1998).
  25. K. Seki and S. Yunoki, PRX Quantum 2, 010333 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.