Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Group Under Which Symmetric Reed-Muller Codes are Invariant (2401.11496v1)

Published 21 Jan 2024 in cs.IT and math.IT

Abstract: The Reed-Muller codes are a family of error-correcting codes that have been widely studied in coding theory. In 2020, Wei Yan and Sian-Jheng Lin introduced a variant of Reed-Muller codes so called symmetric Reed-Muller codes. We investigate linear maps of the automorphism group of symmetric Reed-Muller codes and show that the set of these linear maps forms a subgroup of the general linear group, which is the automorphism group of punctured Reed-Muller codes. We provide a method to determine all the automorphisms in this subgroup explicitly for some special cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Reed–muller codes: Theory and algorithms. IEEE Transactions on Information Theory, 67(6):3251–3277, 2020.
  2. The automorphism group of generalized reed-muller codes. Discrete mathematics, 117(1-3):1–17, 1993.
  3. Thierry P Berger. On the automorphism groups of affine-invariant codes. Designs, codes and cryptography, 7:215–221, 1996.
  4. Thierry P Berger. Automorphism groups of homogeneous and projective reed-muller codes. IEEE Transactions on Information Theory, 48(5):1035–1045, 2006.
  5. The permutation group of affine-invariant extended cyclic codes. IEEE transactions on Information theory, 42(6):2194–2209, 1996.
  6. Permutation matrices, their discrete derivatives and extremal properties. Vietnam Journal of Mathematics, 48(4):719–740, 2020.
  7. Philippe Delsarte. On cyclic codes that are invariant under the general linear group. IEEE Transactions on Information Theory, 16(6):760–769, 1970.
  8. On generalized reedmuller codes and their relatives. Information and control, 16(5):403–442, 1970.
  9. Fundamentals of error correcting codes. Cambridge University Press, 2003.
  10. Some results on cyclic codes which are invariant under the affine group and their applications. Information and Control, 11(5-6):475–496, 1967.
  11. R Knörr and Wolfgang Willems. The automorphism groups of generalized reed-muller codes. Astérisque, 181:182, 1990.
  12. Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error correcting codes, volume 16. Elsevier, 1977.
  13. Handbook of coding theory. Elsevier Science Inc., 1998.
  14. Symmetric reed–muller codes. IEEE Transactions on Communications, 68(7):3937–3947, 2020.
  15. Local correctabilities and dual codes of symmetric reed–muller codes. In 2021 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE, 2021.

Summary

We haven't generated a summary for this paper yet.