Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information sets from defining sets for Reed-Muller codes of first and second order (2401.10109v1)

Published 18 Jan 2024 in cs.IT and math.IT

Abstract: Reed-Muller codes belong to the family of affine-invariant codes. As such codes they have a defining set that determines them uniquely, and they are extensions of cyclic group codes. In this paper we identify those cyclic codes with multidimensional abelian codes and we use the techniques introduced in \cite{BS} to construct information sets for them from their defining set. For first and second order Reed-Muller codes, we describe a direct method to construct information sets in terms of their basic parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. W. C. Huffman, “Codes and Groups”, in Handbook of Coding Theory, vol II, V. S. Pless, W. C. Huffman and R. A. Brualdi Eds. Amsterdam. North-Holland, 1998.
  2. E. F. Assmus Jr and J. D. Key, “Polynomial codes and Finite Geometries”, in Handbook of Coding Theory, vol II, V. S. Pless, W. C. Huffman and R. A. Brualdi Eds. Amsterdam. North-Holland, 1998.
  3. S. D. Berman, “Semisimple cyclic and Abelian codes”, Cybernetics, vol. 3, no. 3, pp. 21-30, 1967.
  4. J. J. Bernal and J. J. Simón, “Information sets from defining sets in abelian codes”, IEEE Trans. Inform. Theory, vol. 57, no. 12, pp. 7990-7999, 2011.
  5. J. J. Bernal and J. J. Simón, “Partial permutation decoding for abelian codes”, IEEE Trans. Inform. Theory, vol. 59, no. 8, pp. 5152-5170, 2013.
  6. A. Blokhuis, G. E. Moorhouse, “Some p-ranks related to orthogonal spaces”, J. Algebraic Combin. vol. 4, pp. 295-316, 1995.
  7. H. Imai, “A theory of two-dimensional cyclic codes”, Inform. and Control, vol34, pp. 1.21, 1977.
  8. J. D. Key, T. P. McDonough, V. C. Mavron, “Partial permutation decoding for codes from finite planes”, Eur. Journal of Combin. vol 26, pp. 665-682, 2005.
  9. J. D. Key, T. P. McDonough, V. C. Mavron, “Information sets and partial permutation decoding for codes from finite geometries”, Finite Fields Appl. vol 12, pp. 232-247, 2006.
  10. D. E. Muller, “Application of boolean algebra to switching circuit design and to error detection”, IEEE Trans. Comput. vol. 3, pp. 6-12, 1954.
  11. G. E. Moorhouse, “Bruck nets, codes and characters of loops”, Des. Codes Cryptogr. vol. 1, pp. 7-29, 1991.
  12. I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme”, IRE Trans. Inform. Theory, IT-4, pp 38-49, 1954.
  13. P. Seneviratne, “Permutation decoding for the first-order Reed-Muller codes”, Discrete Math. vol.309, pp. 1967-1970, 2009
Citations (4)

Summary

We haven't generated a summary for this paper yet.