Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Probing orbits of stellar mass objects deep in galactic nuclei with quasi-periodic eruptions (2401.11190v3)

Published 20 Jan 2024 in astro-ph.HE, astro-ph.GA, and gr-qc

Abstract: Quasi-periodic eruptions (QPEs) are intense repeating soft X-ray bursts with recurrence times about a few to ten hours from nearby galactic nuclei. The origin of QPEs is still unclear. In this work, we investigated the extreme mass ratio inspiral (EMRI) + accretion disk model, where the disk is formed from a previous tidal disruption event (TDE). In this EMRI+TDE disk model, the QPEs are the result of collisions between a TDE disk and a stellar mass object (a stellar mass black hole or a main sequence star) orbiting around a supermassive black hole (SMBH) in galactic nuclei. If this interpretation is correct, QPEs will be invaluable in probing the orbits of stellar mass objects in the vicinity of SMBHs, and further inferring the formation of EMRIs which are one of the primary targets of spaceborne gravitational wave missions. Taking GSN 069 as an example, we find the EMRI wherein is of low eccentricity ($e<0.1$ at 3-$\sigma$ confidence level) and semi-major axis about $O(102)$ gravitational radii of the central SMBH, which is consistent with the prediction of the wet EMRI formation channel, while incompatible with alternatives.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. Luming Sun, Xinwen Shu,  and Tinggui Wang, “RX J1301.9+2747: A Highly Variable Seyfert Galaxy with Extremely Soft X-Ray Emission,” Astrophys. J.  768, 167 (2013), arXiv:1304.3244 [astro-ph.GA] .
  2. Margherita Giustini, Giovanni Miniutti,  and Richard D. Saxton, “X-ray quasi-periodic eruptions from the galactic nucleus of RX J1301.9+2747,” Astronomy&Astrophysics 636, L2 (2020), arXiv:2002.08967 [astro-ph.HE] .
  3. R. Arcodia, A. Merloni, K. Nandra, J. Buchner, M. Salvato, D. Pasham, R. Remillard, J. Comparat, G. Lamer, G. Ponti, A. Malyali, J. Wolf, Z. Arzoumanian, D. Bogensberger, D. A. H. Buckley, K. Gendreau, M. Gromadzki, E. Kara, M. Krumpe, C. Markwardt, M. E. Ramos-Ceja, A. Rau, M. Schramm,  and A. Schwope, “X-ray quasi-periodic eruptions from two previously quiescent galaxies,” Nature (London) 592, 704–707 (2021), arXiv:2104.13388 [astro-ph.HE] .
  4. R. Arcodia, G. Miniutti, G. Ponti, J. Buchner, M. Giustini, A. Merloni, K. Nandra, F. Vincentelli, E. Kara, M. Salvato,  and D. Pasham, “The complex time and energy evolution of quasi-periodic eruptions in eRO-QPE1,” Astronomy&Astrophysics 662, A49 (2022), arXiv:2203.11939 [astro-ph.HE] .
  5. Joheen Chakraborty, Erin Kara, Megan Masterson, Margherita Giustini, Giovanni Miniutti,  and Richard Saxton, “Possible X-Ray Quasi-periodic Eruptions in a Tidal Disruption Event Candidate,” Astroph.J.Lett. 921, L40 (2021), arXiv:2110.10786 [astro-ph.HE] .
  6. T. Wevers, D. R. Pasham, P. Jalan, S. Rakshit,  and R. Arcodia, “Host galaxy properties of quasi-periodically erupting X-ray sources,” Astronomy&Astrophysics 659, L2 (2022), arXiv:2201.11751 [astro-ph.HE] .
  7. G. Miniutti, M. Giustini, R. Arcodia, R. D. Saxton, J. Chakraborty, A. M. Read,  and E. Kara, “Alive and kicking: A new QPE phase in GSN 069 revealing a quiescent luminosity threshold for QPEs,” Astronomy&Astrophysics 674, L1 (2023a), arXiv:2305.09717 [astro-ph.HE] .
  8. X. W. Shu, S. S. Wang, L. M. Dou, N. Jiang, J. X. Wang,  and T. G. Wang, “A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069,” Astroph.J.Lett. 857, L16 (2018), arXiv:1809.00319 [astro-ph.HE] .
  9. Zhenfeng Sheng, Tinggui Wang, Gary Ferland, Xinwen Shu, Chenwei Yang, Ning Jiang,  and Yang Chen, “Evidence of a Tidal-disruption Event in GSN 069 from the Abnormal Carbon and Nitrogen Abundance Ratio,” Astroph.J.Lett. 920, L25 (2021), arXiv:2109.01683 [astro-ph.GA] .
  10. G. Miniutti, M. Giustini, R. Arcodia, R. D. Saxton, A. M. Read, S. Bianchi,  and K. D. Alexander, “Repeating tidal disruptions in GSN 069: Long-term evolution and constraints on quasi-periodic eruptions’ models,” Astronomy&Astrophysics 670, A93 (2023b), arXiv:2207.07511 [astro-ph.HE] .
  11. Tingting Liu, “Massive black holes flaring up time and again,” Nature Astronomy 5, 438–439 (2021).
  12. A. Raj and C. J. Nixon, “Disk Tearing: Implications for Black Hole Accretion and AGN Variability,” Astrophys. J.  909, 82 (2021), arXiv:2101.05825 [astro-ph.HE] .
  13. Xin Pan, Shuang-Liang Li, Xinwu Cao, Giovanni Miniutti,  and Minfeng Gu, “A Disk Instability Model for the Quasi-periodic Eruptions of GSN 069,” Astroph.J.Lett. 928, L18 (2022a), arXiv:2203.12137 [astro-ph.GA] .
  14. Xin Pan, Shuang-Liang Li,  and Xinwu Cao, “Application of the Disk Instability Model to All Quasiperiodic Eruptions,” Astrophys. J.  952, 32 (2023), arXiv:2305.02071 [astro-ph.HE] .
  15. Karamveer Kaur, Nicholas C. Stone,  and Shmuel Gilbaum, “Magnetically dominated discs in tidal disruption events and quasi-periodic eruptions,” MNRAS 524, 1269–1290 (2023), arXiv:2211.00704 [astro-ph.HE] .
  16. Marzena Śniegowska, Mikołaj Grzȩdzielski, Bożena Czerny,  and Agnieszka Janiuk, “Modified models of radiation pressure instability applied to 10, 1055{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT, and 1077{}^{7}start_FLOATSUPERSCRIPT 7 end_FLOATSUPERSCRIPT M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT accreting black holes,” Astronomy&Astrophysics 672, A19 (2023), arXiv:2204.10067 [astro-ph.HE] .
  17. Adam Ingram, Sara E. Motta, Suzanne Aigrain,  and Aris Karastergiou, “A self-lensing binary massive black hole interpretation of quasi-periodic eruptions,” MNRAS 503, 1703–1716 (2021), arXiv:2103.00017 [astro-ph.HE] .
  18. Andrew King, “GSN 069 - A tidal disruption near miss,” MNRAS 493, L120–L123 (2020), arXiv:2002.00970 [astro-ph.HE] .
  19. Andrew King, “Quasi-periodic eruptions from galaxy nuclei,” MNRAS 515, 4344–4349 (2022), arXiv:2206.04698 [astro-ph.GA] .
  20. Andrew King, “Angular momentum transfer in QPEs from galaxy nuclei,” MNRAS 520, L63–L67 (2023), arXiv:2301.03582 [astro-ph.HE] .
  21. Xian Chen, Yu Qiu, Shuo Li,  and F. K. Liu, “Milli-Hertz Gravitational-wave Background Produced by Quasiperiodic Eruptions,” Astrophys. J.  930, 122 (2022), arXiv:2112.03408 [astro-ph.HE] .
  22. Mengye Wang, Jinjing Yin, Yiqiu Ma,  and Qingwen Wu, “A Model for the Possible Connection Between a Tidal Disruption Event and Quasi-periodic Eruption in GSN 069,” Astrophys. J.  933, 225 (2022), arXiv:2206.03092 [astro-ph.HE] .
  23. Z. Y. Zhao, Y. Y. Wang, Y. C. Zou, F. Y. Wang,  and Z. G. Dai, “Quasi-periodic eruptions from the helium envelope of hydrogen-deficient stars stripped by supermassive black holes,” Astronomy&Astrophysics 661, A55 (2022), arXiv:2109.03471 [astro-ph.HE] .
  24. Brian D. Metzger, Nicholas C. Stone,  and Shmuel Gilbaum, “Interacting Stellar EMRIs as Sources of Quasi-periodic Eruptions in Galactic Nuclei,” Astrophys. J.  926, 101 (2022), arXiv:2107.13015 [astro-ph.HE] .
  25. Wenbin Lu and Eliot Quataert, “Quasi-periodic eruptions from mildly eccentric unstable mass transfer in galactic nuclei,” arXiv e-prints , arXiv:2210.08023 (2022), arXiv:2210.08023 [astro-ph.HE] .
  26. Julian H. Krolik and Itai Linial, “Quasiperiodic Erupters: A Stellar Mass-transfer Model for the Radiation,” Astrophys. J.  941, 24 (2022), arXiv:2209.02786 [astro-ph.HE] .
  27. Itai Linial and Re’em Sari, “Unstable Mass Transfer from a Main-sequence Star to a Supermassive Black Hole and Quasiperiodic Eruptions,” Astrophys. J.  945, 86 (2023), arXiv:2211.09851 [astro-ph.HE] .
  28. Petra Suková, Michal Zajaček, Vojtěch Witzany,  and Vladimír Karas, “Stellar Transits across a Magnetized Accretion Torus as a Mechanism for Plasmoid Ejection,” Astrophys. J.  917, 43 (2021), arXiv:2102.08135 [astro-ph.HE] .
  29. Jingtao Xian, Fupeng Zhang, Liming Dou, Jiasheng He,  and Xinwen Shu, “X-Ray Quasi-periodic Eruptions Driven by Star-Disk Collisions: Application to GSN069 and Probing the Spin of Massive Black Holes,” Astroph.J.Lett. 921, L32 (2021), arXiv:2110.10855 [astro-ph.HE] .
  30. Hiromichi Tagawa and Zoltán Haiman, ‘‘Flares from stars crossing active galactic nuclei disks on low-inclination orbits,” arXiv e-prints , arXiv:2304.03670 (2023), arXiv:2304.03670 [astro-ph.HE] .
  31. Itai Linial and Brian D. Metzger, “EMRI + TDE = QPE: Periodic X-ray Flares from Star-Disk Collisions in Galactic Nuclei,” arXiv e-prints , arXiv:2303.16231 (2023a), arXiv:2303.16231 [astro-ph.HE] .
  32. Alessia Franchini, Matteo Bonetti, Alessandro Lupi, Giovanni Miniutti, Elisa Bortolas, Margherita Giustini, Massimo Dotti, Alberto Sesana, Riccardo Arcodia,  and Taeho Ryu, “Quasi-periodic eruptions from impacts between the secondary and a rigidly precessing accretion disc in an extreme mass-ratio inspiral system,” Astronomy&Astrophysics 675, A100 (2023), arXiv:2304.00775 [astro-ph.HE] .
  33. G. Miniutti, R. D. Saxton, M. Giustini, K. D. Alexander, R. P. Fender, I. Heywood, I. Monageng, M. Coriat, A. K. Tzioumis, A. M. Read, C. Knigge, P. Gandhi, M. L. Pretorius,  and B. Agís-González, “Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus,” Nature (London) 573, 381–384 (2019), arXiv:1909.04693 [astro-ph.HE] .
  34. Itai Linial and Brian D. Metzger, “Ultraviolet Quasi-periodic Eruptions from Star-Disk Collisions in Galactic Nuclei,” arXiv e-prints , arXiv:2311.16231 (2023b), arXiv:2311.16231 [astro-ph.HE] .
  35. W. D. Arnett, “Analytic solutions for light curves of supernovae of Type II,” Astrophys. J.  237, 541–549 (1980).
  36. Harry J. Lehto and Mauri J. Valtonen, “OJ 287 Outburst Structure and a Binary Black Hole Model,” Astrophys. J.  460, 207 (1996).
  37. P. Pihajoki, ‘‘Black hole accretion disc impacts,” MNRAS 457, 1145–1161 (2016), arXiv:1510.07642 [astro-ph.HE] .
  38. Ning Jiang, Huan Yang, Tinggui Wang, Jiazheng Zhu, Zhenwei Lyu, Liming Dou, Yibo Wang, Jianguo Wang, Zhen Pan, Hui Liu, Xinwen Shu,  and Zhenya Zheng, “Tick-Tock: The Imminent Merger of a Supermassive Black Hole Binary,” arXiv e-prints , arXiv:2201.11633 (2022), arXiv:2201.11633 [astro-ph.HE] .
  39. Pavel B. Ivanov, Igor V. Igumenshchev,  and Igor D. Novikov, “Hydrodynamics of Black Hole-Accretion Disk Collision,” Astrophys. J.  507, 131–144 (1998).
  40. N. I. Shakura and R. A. Sunyaev, “Black holes in binary systems. Observational appearance.” Astronomy&Astrophysics 24, 337–355 (1973).
  41. Bence Kocsis, Nicolás Yunes,  and Abraham Loeb, “Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks,” Phys. Rev. D 84, 024032 (2011).
  42. S. Chandrasekhar, “Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction.” Astrophys. J.  97, 255 (1943).
  43. Y. Rephaeli and E. E. Salpeter, ‘‘Flow past a massive object and the gravitational drag,” Astrophys. J.  240, 20–24 (1980).
  44. James Binney and Scott Tremaine, Galactic dynamics (1987).
  45. A. Shankar, W. Kley,  and A. Burkert, “Axisymmetric accretion flow past large, gravitating bodies,” Astronomy&Astrophysics 274, 955 (1993).
  46. Maximilian Ruffert and David Arnett, “Three-dimensional Hydrodynamic Bondi-Hoyle Accretion. II. Homogeneous Medium at Mach 3 with gamma = 5/3,” Astrophys. J.  427, 351 (1994).
  47. Richard Edgar, “A review of Bondi-Hoyle-Lyttleton accretion,” New Astronomy Reviews 48, 843–859 (2004), arXiv:astro-ph/0406166 [astro-ph] .
  48. Damien Chapon, Lucio Mayer,  and Romain Teyssier, “Hydrodynamics of galaxy mergers with supermassive black holes: is there a last parsec problem?” MNRAS 429, 3114–3122 (2013), arXiv:1110.6086 [astro-ph.GA] .
  49. Daniel Thun, Rolf Kuiper, Franziska Schmidt,  and Wilhelm Kley, “Dynamical friction for supersonic motion in a homogeneous gaseous medium,” Astronomy&Astrophysics 589, A10 (2016), arXiv:1601.07799 [astro-ph.GA] .
  50. R. Hunt, ‘‘A fluid dynamical study of the accretion process,” MNRAS 154, 141 (1971).
  51. R. Hunt, “Accretion of gas having specific heat ratio 3/3 by a moving gravitating body.” MNRAS 188, 83–91 (1979).
  52. E. Shima, T. Matsuda, H. Takeda,  and K. Sawada, “Hydrodynamic calculations of axisymmetric accretion flow,” MNRAS 217, 367–386 (1985).
  53. M. Ruffert, “Three-dimensional hydrodynamic Bondi-Hoyle accretion. V. Specific heat ratio 1.01, nearly isothermal flow.” Astronomy&Astrophysics 311, 817–832 (1996), arXiv:astro-ph/9510021 [astro-ph] .
  54. J. P. Norris, J. T. Bonnell, D. Kazanas, J. D. Scargle, J. Hakkila,  and T. W. Giblin, “Long-Lag, Wide-Pulse Gamma-Ray Bursts,” Astrophys. J.  627, 324–345 (2005), arXiv:astro-ph/0503383 [astro-ph] .
  55. S. Chandrasekhar, The mathematical theory of black holes (1983).
  56. Irwin I. Shapiro, “Fourth test of general relativity,” Phys. Rev. Lett. 13, 789–791 (1964).
  57. Joshua S. Speagle, “DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences,” MNRAS 493, 3132–3158 (2020), arXiv:1904.02180 [astro-ph.IM] .
  58. Michael J. Williams, “nessai: Nested sampling with artificial intelligence,”  (2021).
  59. Gregory Ashton, Moritz Hübner, Paul D. Lasky, Colm Talbot, Kendall Ackley, Sylvia Biscoveanu, Qi Chu, Atul Divakarla, Paul J. Easter, Boris Goncharov, Francisco Hernandez Vivanco, Jan Harms, Marcus E. Lower, Grant D. Meadors, Denyz Melchor, Ethan Payne, Matthew D. Pitkin, Jade Powell, Nikhil Sarin, Rory J. E. Smith,  and Eric Thrane, “BILBY: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy,” Astroph.J.S. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
  60. L. Strüder, U. Briel, K. Dennerl, R. Hartmann, E. Kendziorra, N. Meidinger, E. Pfeffermann, C. Reppin, B. Aschenbach, W. Bornemann, H. Bräuninger, W. Burkert, M. Elender, M. Freyberg, F. Haberl, G. Hartner, F. Heuschmann, H. Hippmann, E. Kastelic, S. Kemmer, G. Kettenring, W. Kink, N. Krause, S. Müller, A. Oppitz, W. Pietsch, M. Popp, P. Predehl, A. Read, K. H. Stephan, D. Stötter, J. Trümper, P. Holl, J. Kemmer, H. Soltau, R. Stötter, U. Weber, U. Weichert, C. von Zanthier, D. Carathanassis, G. Lutz, R. H. Richter, P. Solc, H. Böttcher, M. Kuster, R. Staubert, A. Abbey, A. Holland, M. Turner, M. Balasini, G. F. Bignami, N. La Palombara, G. Villa, W. Buttler, F. Gianini, R. Lainé, D. Lumb,  and P. Dhez, “The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera,” Astronomy&Astrophysics 365 (2001).
  61. K. A. Arnaud, “XSPEC: The First Ten Years,” in Astronomical Data Analysis Software and Systems V, Astronomical Society of the Pacific Conference Series, Vol. 101, edited by George H. Jacoby and Jeannette Barnes (1996) p. 17.
  62. Kishore C. Patra, Wenbin Lu, Yilun Ma, Eliot Quataert, Giovanni Miniutti, Marco Chiaberge,  and Alexei V. Filippenko, “Constraints on the narrow-line region of the x-ray quasi-periodic eruption source gsn 069,”  (2023), arXiv:2310.05574 [astro-ph.HE] .
  63. Zhen Pan, Zhenwei Lyu,  and Huan Yang, “Mass-gap extreme mass ratio inspirals,” Phys. Rev. D 105, 083005 (2022b), arXiv:2112.10237 [astro-ph.HE] .
  64. Zhen Pan and Huan Yang, ‘‘Supercritical Accretion of Stellar-mass Compact Objects in Active Galactic Nuclei,” Astrophys. J.  923, 173 (2021a), arXiv:2108.00267 [astro-ph.HE] .
  65. M. Liska, C. Hesp, A. Tchekhovskoy, A. Ingram, M. van der Klis,  and S. Markoff, “Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations,” MNRAS 474, L81–L85 (2018), arXiv:1707.06619 [astro-ph.HE] .
  66. K. Chatterjee, Z. Younsi, M. Liska, A. Tchekhovskoy, S. B. Markoff, D. Yoon, D. van Eijnatten, C. Hesp, A. Ingram,  and M. B. M. van der Klis, “Observational signatures of disc and jet misalignment in images of accreting black holes,” MNRAS 499, 362–378 (2020), arXiv:2002.08386 [astro-ph.GA] .
  67. Koushik Chatterjee, Matthew Liska, Alexander Tchekhovskoy,  and Sera Markoff, “Misaligned magnetized accretion flows onto spinning black holes: magneto-spin alignment, outflow power and intermittent jets,” arXiv e-prints , arXiv:2311.00432 (2023), arXiv:2311.00432 [astro-ph.HE] .
  68. Nicholas Stone and Abraham Loeb, “Observing Lense-Thirring Precession in Tidal Disruption Flares,” Phys. Rev. Lett.  108, 061302 (2012), arXiv:1109.6660 [astro-ph.HE] .
  69. Alessia Franchini, Giuseppe Lodato,  and Stefano Facchini, “Lense-Thirring precession around supermassive black holes during tidal disruption events,” MNRAS 455, 1946–1956 (2016), arXiv:1510.04879 [astro-ph.HE] .
  70. Itai Linial and Eliot Quataert, “Period Evolution of Repeating Transients in Galactic Nuclei,” arXiv e-prints , arXiv:2309.15849 (2023), arXiv:2309.15849 [astro-ph.HE] .
  71. Clovis Hopman and Tal Alexander, “The Orbital Statistics of Stellar Inspiral and Relaxation near a Massive Black Hole: Characterizing Gravitational Wave Sources,” Astrophys. J.  629, 362–372 (2005), arXiv:astro-ph/0503672 [astro-ph] .
  72. Miguel Preto and Pau Amaro-Seoane, “On Strong Mass Segregation Around a Massive Black Hole: Implications for Lower-Frequency Gravitational-Wave Astrophysics,” Astroph.J.Lett. 708, L42–L46 (2010), arXiv:0910.3206 [astro-ph.GA] .
  73. Ben Bar-Or and Tal Alexander, “Steady-state Relativistic Stellar Dynamics Around a Massive Black hole,” Astrophys. J.  820, 129 (2016), arXiv:1508.01390 [astro-ph.GA] .
  74. Pau Amaro-Seoane, “Relativistic dynamics and extreme mass ratio inspirals,” Living Reviews in Relativity 21, 4 (2018), arXiv:1205.5240 [astro-ph.CO] .
  75. M. Coleman Miller, Marc Freitag, Douglas P. Hamilton,  and Vanessa M. Lauburg, “Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events,” Astroph.J.Lett. 631, L117–L120 (2005), arXiv:astro-ph/0507133 [astro-ph] .
  76. Yael Raveh and Hagai B. Perets, “Extreme mass-ratio gravitational-wave sources: mass segregation and post binary tidal-disruption captures,” MNRAS 501, 5012–5020 (2021), arXiv:2011.13952 [astro-ph.GA] .
  77. Zhen Pan and Huan Yang, “Formation rate of extreme mass ratio inspirals in active galactic nuclei,” Phys. Rev. D 103, 103018 (2021b), arXiv:2101.09146 [astro-ph.HE] .
  78. Zhen Pan, Zhenwei Lyu,  and Huan Yang, “Wet extreme mass ratio inspirals may be more common for spaceborne gravitational wave detection,” Phys. Rev. D 104, 063007 (2021), arXiv:2104.01208 [astro-ph.HE] .
  79. Andrea Derdzinski and Lucio Mayer, “In situ extreme mass ratio inspirals via subparsec formation and migration of stars in thin, gravitationally unstable AGN discs,” MNRAS 521, 4522–4543 (2023), arXiv:2205.10382 [astro-ph.GA] .
  80. Lyman Spitzer, Dynamical evolution of globular clusters (1987).
  81. Scott Tremaine, Karl Gebhardt, Ralf Bender, Gary Bower, Alan Dressler, S. M. Faber, Alexei V. Filippenko, Richard Green, Carl Grillmair, Luis C. Ho, John Kormendy, Tod R. Lauer, John Magorrian, Jason Pinkney,  and Douglas Richstone, “The Slope of the Black Hole Mass versus Velocity Dispersion Correlation,” Astrophys. J.  574, 740–753 (2002), arXiv:astro-ph/0203468 [astro-ph] .
  82. Kayhan Gültekin, Douglas O. Richstone, Karl Gebhardt, Tod R. Lauer, Scott Tremaine, M. C. Aller, Ralf Bender, Alan Dressler, S. M. Faber, Alexei V. Filippenko, Richard Green, Luis C. Ho, John Kormendy, John Magorrian, Jason Pinkney,  and Christos Siopis, “The M-σ𝜎\sigmaitalic_σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter,” Astrophys. J.  698, 198–221 (2009), arXiv:0903.4897 [astro-ph.GA] .
  83. P. C. Peters, “Gravitational radiation and the motion of two point masses,” Phys. Rev. 136, B1224–B1232 (1964).
  84. J. N. Bahcall and R. A. Wolf, ‘‘Star distribution around a massive black hole in a globular cluster.” Astrophys. J.  209, 214–232 (1976).
  85. Hidekazu Tanaka, Taku Takeuchi,  and William R. Ward, “Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration,” Astrophys. J.  565, 1257–1274 (2002).
  86. Hidekazu Tanaka and William R. Ward, “Three-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves,” Astrophys. J.  602, 388–395 (2004).
  87. F. Verbunt and E. S. Phinney, “Tidal circularization and the eccentricity of binaries containing giant stars.” Astronomy&Astrophysics 296, 709 (1995).
  88. Omer Blaes, Man Hoi Lee,  and Aristotle Socrates, “The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes,” Astrophys. J.  578, 775–786 (2002), arXiv:astro-ph/0203370 [astro-ph] .
  89. Bin Liu, Diego J. Muñoz,  and Dong Lai, “Suppression of extreme orbital evolution in triple systems with short-range forces,” MNRAS 447, 747–764 (2015), arXiv:1409.6717 [astro-ph.EP] .
  90. Maximiliano Isi, Katerina Chatziioannou,  and Will M. Farr, “Hierarchical Test of General Relativity with Gravitational Waves,” Phys. Rev. Lett.  123, 121101 (2019), arXiv:1904.08011 [gr-qc] .
  91. Eiichiro Kokubo, Keiko Yoshinaga,  and Junichiro Makino, “On a time-symmetric Hermite integrator for planetary N-body simulation,” Monthly Notices of the Royal Astronomical Society 297, 1067–1072 (1998), https://academic.oup.com/mnras/article-pdf/297/4/1067/3464608/297-4-1067.pdf .
  92. James M. Stone, Kengo Tomida, Christopher J. White,  and Kyle G. Felker, “The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers,” Astroph.J.S. 249, 4 (2020), arXiv:2005.06651 [astro-ph.IM] .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: