Nonlinear Observer Design in Discrete-time Systems: Incorporating LMI Relaxation Strategies (2401.10990v4)
Abstract: This manuscript focuses on the $\mathcal{H}_\infty$ observer design for a class of nonlinear discrete systems under the presence of measurement noise or external disturbances. Two new Linear Matrix Inequality (LMI) conditions are developed in this method through the utilization of the reformulated Lipschitz property, a new variant of Young inequality and the well-known Linear Parameter Varying (LPV) approach. One of the key components of the proposed LMIs is the generalized matrix multipliers. The judicious use of these multipliers enables us to introduce more numbers of decision variables inside LMIs than the one illustrated in the literature. It aids in adding some extra degrees of freedom from a feasibility point of view, thus enhancing the LMI conditions. Thus, the established LMIs are less conservative than existing ones. Later on, the effectiveness of the developed LMIs and observer is highlighted through a numerical example and the application of state of charge (SoC) estimation in the Li-ion battery model.
- Y. Shen, A robust method for state of charge estimation of lithium-ion batteries using adaptive nonlinear neural observer, Journal of Energy Storage 72 (2023) 108480.
- Circle criterion-based ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT observer design for Lipschitz and monotonic nonlinear systems-enhanced LMI conditions and constructive discussions, Automatica 85 (2017) 412–425.
- A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control 37 (1992) 875–880. doi:10.1109/9.256352.
- J. H. Ahrens, H. K. Khalil, High-gain observers in the presence of measurement noise: A switched-gain approach, Automatica 45 (2009) 936–943.
- S. K. Spurgeon, Sliding mode observers: a survey, International Journal of Systems Science 39 (2008) 751–764.
- A note on observers for discrete-time lipschitz nonlinear systems, IEEE Transactions on Circuits and Systems II: Express Briefs 59 (2012) 123–127. doi:10.1109/TCSII.2011.2174671.
- ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach, International Journal of Robust and Nonlinear Control 22 (2012) 1806–1826.
- S. Ibrir, Circle-criterion approach to discrete-time nonlinear observer design, Automatica 43 (2007) 1432–1441.
- A note on observers for discrete-time Lipschitz nonlinear systems, IEEE Transactions on Circuits and Systems II: Express Briefs 59 (2012) 123–127. doi:10.1109/TCSII.2011.2174671.
- A. Zemouche, M. Boutayeb, Observer design for lipschitz nonlinear systems: the discrete-time case, IEEE Transactions on Circuits and Systems II: Express Briefs 53 (2006) 777–781.
- M. Abbaszadeh, H. J. Marquez, LMI optimization approach to robust ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems, International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 19 (2009) 313–340.
- LMI-based ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT observer design for nonlinear Lipschitz system, IFAC-PapersOnLine 56 (2023) 6745–6750.
- A. Zemouche, M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica 49 (2013) 585–591.
- A discrete-time nonlinear state observer for the anaerobic digestion process, International Journal of Robust and Nonlinear Control 29 (2019) 1279–1301.
- X. Chu, M. Li, ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT observer-based event-triggered sliding mode control for a class of discrete-time nonlinear networked systems with quantizations, Isa Transactions 79 (2018) 13–26.
- J. D. Avilés, J. A. Moreno, Observer design for discrete-time nonlinear systems using the stability radii theory, IEEE Transactions on Circuits and Systems II: Express Briefs 67 (2019) 1959–1963.
- Observer-based stabilization of Lipschitz nonlinear systems by using a new matrix-multiplier-based lmi approach, IEEE Control Systems Letters 7 (2023) 3723–3728. doi:10.1109/LCSYS.2023.3341549.
- Observers for nonlinear Lipschitz discrete time systems with extension to ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT filtering design, in: 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), 2016, pp. 364–369. doi:10.1109/SSD.2016.7473668.
- State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer, Electrochimica Acta 225 (2017) 225–234.
- J. Lofberg, Yalmip : a toolbox for modeling and optimization in matlab, in: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), 2004, pp. 284–289.
- State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering, IEEE Transactions on Vehicular Technology 62 (2013) 1020–1030. doi:10.1109/TVT.2012.2235474.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.