Topological pumping induced by spatiotemporal modulation of interaction (2401.10906v1)
Abstract: Particle-particle interaction provides a new degree of freedom to induce novel topological phenomena. Here, we propose to use spatiotemporal modulation of interaction to realize topological pumping without single-particle counterpart. Because the modulation breaks time-reversal symmetry, the multiparticle energy bands of bound states have none-zero Chern number, and support topological bound edge states. In a Thouless pump, a bound state that uniformly occupies a topological energy band can be shifted by integer unit cells per cycle, consistent with the corresponding Chern number. We can also realize topological pumping of bound edge state from one end to another. The entanglement entropy between particles rapidly increases at transition points, which is related to the spatial spread of a bounded pair. In addition, we propose to realize hybridized pumping with fractional displacement per cycle by adding an extra tilt potential to separate topological pumping of the bound state and Bloch oscillations of single particle. Our work could trigger further studies of correlated topological phenomena that do not have a single-particle counterpart.
- Citro R and Aidelsburger M 2023 Nature Reviews Physics 5 87–101 URL https://www.nature.com/articles/s42254-022-00545-0
- Thouless D J 1983 Phys. Rev. B 27(10) 6083–6087 URL https://link.aps.org/doi/10.1103/PhysRevB.27.6083
- King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47(3) 1651–1654 URL https://link.aps.org/doi/10.1103/PhysRevB.47.1651
- Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82(3) 1959–2007 URL https://link.aps.org/doi/10.1103/RevModPhys.82.1959
- Wang L, Troyer M and Dai X 2013 Phys. Rev. Lett. 111(2) 026802 URL https://link.aps.org/doi/10.1103/PhysRevLett.111.026802
- Wei R and Mueller E J 2015 Phys. Rev. A 92(1) 013609 URL https://link.aps.org/doi/10.1103/PhysRevA.92.013609
- Jürgensen M, Mukherjee S and Rechtsman M C 2021 Nature 596 63–67 URL https://www.nature.com/articles/s41586-021-03688-9
- Gorlach M A and Poddubny A N 2017 Phys. Rev. A 95(5) 053866 URL https://link.aps.org/doi/10.1103/PhysRevA.95.053866
- van Voorden B A and Schoutens K 2019 New Journal of Physics 21 013026 URL https://dx.doi.org/10.1088/1367-2630/aaf748
- Stepanenko A A and Gorlach M A 2020 Phys. Rev. A 102(1) 013510 URL https://link.aps.org/doi/10.1103/PhysRevA.102.013510
- Kuno Y and Hatsugai Y 2020 Phys. Rev. Res. 2(4) 042024 URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.042024
- Azcona P M and Downing C 2021 Scientific Reports 11 12540 URL https://www.nature.com/articles/s41598-021-91778-z
- Zheng Y and Yang S J 2023 Journal of Physics B: Atomic, Molecular and Optical Physics 56 125301 URL https://dx.doi.org/10.1088/1361-6455/acd66f
- Lin L, Ke Y and Lee C 2023 Phys. Rev. B 107(12) 125161 URL https://link.aps.org/doi/10.1103/PhysRevB.107.125161
- Lin L, Ke Y and Lee C 2020 Phys. Rev. A 101(2) 023620 URL https://link.aps.org/doi/10.1103/PhysRevA.101.023620
- Ke Y and Lee C 2023 Nature Physics 19 1387–1388 URL https://www.nature.com/articles/s41567-023-02169-2
- Zeng T S, Wang C and Zhai H 2015 Phys. Rev. Lett. 115(9) 095302 URL https://link.aps.org/doi/10.1103/PhysRevLett.115.095302
- Zeng T S, Zhu W and Sheng D N 2016 Phys. Rev. B 94(23) 235139 URL https://link.aps.org/doi/10.1103/PhysRevB.94.235139
- Bravyi S, DiVincenzo D P and Loss D 2011 Annals of physics 326 2793–2826 URL https://www.sciencedirect.com/science/article/abs/pii/S0003491611001059
- Takahashi M 1977 Journal of Physics C: Solid State Physics 10 1289 URL https://dx.doi.org/10.1088/0022-3719/10/8/031
- Valiente M and Petrosyan D 2008 Journal of Physics B: Atomic, Molecular and Optical Physics 41 161002 URL https://iopscience.iop.org/article/10.1088/0953-4075/41/16/161002/meta
- Marzari N and Vanderbilt D 1997 Phys. Rev. B 56(20) 12847–12865 URL https://link.aps.org/doi/10.1103/PhysRevB.56.12847
- Bloch F 1929 Zeitschrift für physik 52 555–600
- Rachel S 2018 Reports on Progress in Physics 81 116501 URL https://iopscience.iop.org/article/10.1088/1361-6633/aad6a6/meta
- Berti A and Carusotto I 2022 Phys. Rev. A 105(2) 023329 URL https://link.aps.org/doi/10.1103/PhysRevA.105.023329
- Iskin M 2023 Phys. Rev. A 107(5) 053323 URL https://link.aps.org/doi/10.1103/PhysRevA.107.053323
- Gemelke N, Sarajlic E and Chu S 2010 Rotating few-body atomic systems in the fractional quantum hall regime (Preprint 1007.2677) URL https://arxiv.org/abs/1007.2677
- Repellin C, Léonard J and Goldman N 2020 Phys. Rev. A 102(6) 063316 URL https://link.aps.org/doi/10.1103/PhysRevA.102.063316
- Okuma N and Mizoguchi T 2023 Phys. Rev. Res. 5(1) 013112 URL https://link.aps.org/doi/10.1103/PhysRevResearch.5.013112
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.