Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Topological pumping induced by spatiotemporal modulation of interaction (2401.10906v1)

Published 7 Jan 2024 in cond-mat.mes-hall and quant-ph

Abstract: Particle-particle interaction provides a new degree of freedom to induce novel topological phenomena. Here, we propose to use spatiotemporal modulation of interaction to realize topological pumping without single-particle counterpart. Because the modulation breaks time-reversal symmetry, the multiparticle energy bands of bound states have none-zero Chern number, and support topological bound edge states. In a Thouless pump, a bound state that uniformly occupies a topological energy band can be shifted by integer unit cells per cycle, consistent with the corresponding Chern number. We can also realize topological pumping of bound edge state from one end to another. The entanglement entropy between particles rapidly increases at transition points, which is related to the spatial spread of a bounded pair. In addition, we propose to realize hybridized pumping with fractional displacement per cycle by adding an extra tilt potential to separate topological pumping of the bound state and Bloch oscillations of single particle. Our work could trigger further studies of correlated topological phenomena that do not have a single-particle counterpart.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Citro R and Aidelsburger M 2023 Nature Reviews Physics 5 87–101 URL https://www.nature.com/articles/s42254-022-00545-0
  2. Thouless D J 1983 Phys. Rev. B 27(10) 6083–6087 URL https://link.aps.org/doi/10.1103/PhysRevB.27.6083
  3. King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47(3) 1651–1654 URL https://link.aps.org/doi/10.1103/PhysRevB.47.1651
  4. Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82(3) 1959–2007 URL https://link.aps.org/doi/10.1103/RevModPhys.82.1959
  5. Wang L, Troyer M and Dai X 2013 Phys. Rev. Lett. 111(2) 026802 URL https://link.aps.org/doi/10.1103/PhysRevLett.111.026802
  6. Wei R and Mueller E J 2015 Phys. Rev. A 92(1) 013609 URL https://link.aps.org/doi/10.1103/PhysRevA.92.013609
  7. Jürgensen M, Mukherjee S and Rechtsman M C 2021 Nature 596 63–67 URL https://www.nature.com/articles/s41586-021-03688-9
  8. Gorlach M A and Poddubny A N 2017 Phys. Rev. A 95(5) 053866 URL https://link.aps.org/doi/10.1103/PhysRevA.95.053866
  9. van Voorden B A and Schoutens K 2019 New Journal of Physics 21 013026 URL https://dx.doi.org/10.1088/1367-2630/aaf748
  10. Stepanenko A A and Gorlach M A 2020 Phys. Rev. A 102(1) 013510 URL https://link.aps.org/doi/10.1103/PhysRevA.102.013510
  11. Kuno Y and Hatsugai Y 2020 Phys. Rev. Res. 2(4) 042024 URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.042024
  12. Azcona P M and Downing C 2021 Scientific Reports 11 12540 URL https://www.nature.com/articles/s41598-021-91778-z
  13. Zheng Y and Yang S J 2023 Journal of Physics B: Atomic, Molecular and Optical Physics 56 125301 URL https://dx.doi.org/10.1088/1361-6455/acd66f
  14. Lin L, Ke Y and Lee C 2023 Phys. Rev. B 107(12) 125161 URL https://link.aps.org/doi/10.1103/PhysRevB.107.125161
  15. Lin L, Ke Y and Lee C 2020 Phys. Rev. A 101(2) 023620 URL https://link.aps.org/doi/10.1103/PhysRevA.101.023620
  16. Ke Y and Lee C 2023 Nature Physics 19 1387–1388 URL https://www.nature.com/articles/s41567-023-02169-2
  17. Zeng T S, Wang C and Zhai H 2015 Phys. Rev. Lett. 115(9) 095302 URL https://link.aps.org/doi/10.1103/PhysRevLett.115.095302
  18. Zeng T S, Zhu W and Sheng D N 2016 Phys. Rev. B 94(23) 235139 URL https://link.aps.org/doi/10.1103/PhysRevB.94.235139
  19. Bravyi S, DiVincenzo D P and Loss D 2011 Annals of physics 326 2793–2826 URL https://www.sciencedirect.com/science/article/abs/pii/S0003491611001059
  20. Takahashi M 1977 Journal of Physics C: Solid State Physics 10 1289 URL https://dx.doi.org/10.1088/0022-3719/10/8/031
  21. Valiente M and Petrosyan D 2008 Journal of Physics B: Atomic, Molecular and Optical Physics 41 161002 URL https://iopscience.iop.org/article/10.1088/0953-4075/41/16/161002/meta
  22. Marzari N and Vanderbilt D 1997 Phys. Rev. B 56(20) 12847–12865 URL https://link.aps.org/doi/10.1103/PhysRevB.56.12847
  23. Bloch F 1929 Zeitschrift für physik 52 555–600
  24. Rachel S 2018 Reports on Progress in Physics 81 116501 URL https://iopscience.iop.org/article/10.1088/1361-6633/aad6a6/meta
  25. Berti A and Carusotto I 2022 Phys. Rev. A 105(2) 023329 URL https://link.aps.org/doi/10.1103/PhysRevA.105.023329
  26. Iskin M 2023 Phys. Rev. A 107(5) 053323 URL https://link.aps.org/doi/10.1103/PhysRevA.107.053323
  27. Gemelke N, Sarajlic E and Chu S 2010 Rotating few-body atomic systems in the fractional quantum hall regime (Preprint 1007.2677) URL https://arxiv.org/abs/1007.2677
  28. Repellin C, Léonard J and Goldman N 2020 Phys. Rev. A 102(6) 063316 URL https://link.aps.org/doi/10.1103/PhysRevA.102.063316
  29. Okuma N and Mizoguchi T 2023 Phys. Rev. Res. 5(1) 013112 URL https://link.aps.org/doi/10.1103/PhysRevResearch.5.013112
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: