Non-linear-enabled localization in driven-dissipative photonic lattices (2401.10788v2)
Abstract: Recent experimental work has demonstrated the ability to achieve reconfigurable photon localization in lossy photonic lattices by continuously driving them with lasers strategically positioned at specific locations. This localization results from the perfect, destructive interference of light emitted from different positions and, because of that, occurs only at very specific frequencies. Here, we examine this localization regime in the presence of standard optical Kerr non-linearities, such as those found in polaritonic lattices, and show that they stabilize driven-dissipative localization across frequency ranges significantly broader than those observed in the linear regime. Moreover, we demonstrate that, contrary to intuition, in most siutations this driven-dissipative localization does not enhance non-linear effects like optical bistabilities, due to a concurrent reduction in overall intensities. Nevertheless, we are able to identify certain parameter regions where non-linear enhancement is achieved, corresponding to situations where emission from different spots constructively interferes.
- P. W. Anderson, Phys. Rev. 109, 1492 (1958).
 - P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
 - T. R. Kirkpatrick, Phys. Rev. B 31, 5746 (1985).
 - S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).
 - H. J. Kimble, Nature 453, 1023 (2008).
 - A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
 - A. Reiserer, Rev. Mod. Phys. 94, 041003 (2022).
 - I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013a).
 - J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
 - T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Physics Today 5, 44 (2008).
 - J. von Neumann and E. P. Wigner, Über merkwürdige diskrete eigenwerte, in The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, edited by A. S. Wightman (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993) pp. 291–293.
 - S. Sugimoto, Y. Ashida, and M. Ueda, Many-body bound states in the continuum (2023), arXiv:2307.05456 [quant-ph] .
 - A. Gonzalez-Tudela, New Journal of Physics 24, 043001 (2022).
 - P. N. Butcher and D. Cotter, The elements of nonlinear optics, Cambridge Studies in Modern Optics (Cambridge University Press, 2008).
 - S. Fan, W. Suh, and J. D. Joannopoulos, JOSA A 20, 569 (2003).
 - D. Walls and G. Milburn, Quantum Optics (Springer Berlin Heidelberg, 2008).
 - Codes to reproduce the results of this manuscript are available at: https://github.com/albertomdlh/non-linear-localization.
 - A. González-Tudela and J. I. Cirac, Phys. Rev. Lett. 119, 143602 (2017a).
 - A. González-Tudela and J. I. Cirac, Phys. Rev. A 96, 043811 (2017b).
 - W. L. Barnes, S. A. R. Horsley, and W. L. Vos, Journal of Optics 22, 073501 (2020).
 - T. Baba, Nature Photonics 2, 465 (2008).
 - P. K. Shukla and J. J. Rasmussen, Opt. Lett. 11, 171 (1986).
 - M. Nakazawa, K. Suzuki, and H. A. Haus, Phys. Rev. A 38, 5193 (1988).
 - S. Trillo and S. Wabnitz, Opt. Lett. 16, 986 (1991).
 - I. Carusotto and C. Ciuti, Phys. Rev. Lett. 93, 166401 (2004).
 - I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013b).
 - N. Ashcroft and D. Mermin, Solid State Physics (Harcourt College Publishers, 1976) p. 95.
 - K. P. Kalinin and N. G. Berloff, Phys. Rev. Lett. 121, 235302 (2018).
 - K. P. Kalinin and N. G. Berloff, Phys. Rev. B 10, 245306 (2019).
 - A. Muñoz de las Heras and I. Carusotto, Phys. Rev. A 104, 043501 (2021).
 
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.