Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Non-linear-enabled localization in driven-dissipative photonic lattices (2401.10788v2)

Published 19 Jan 2024 in physics.optics and cond-mat.mes-hall

Abstract: Recent experimental work has demonstrated the ability to achieve reconfigurable photon localization in lossy photonic lattices by continuously driving them with lasers strategically positioned at specific locations. This localization results from the perfect, destructive interference of light emitted from different positions and, because of that, occurs only at very specific frequencies. Here, we examine this localization regime in the presence of standard optical Kerr non-linearities, such as those found in polaritonic lattices, and show that they stabilize driven-dissipative localization across frequency ranges significantly broader than those observed in the linear regime. Moreover, we demonstrate that, contrary to intuition, in most siutations this driven-dissipative localization does not enhance non-linear effects like optical bistabilities, due to a concurrent reduction in overall intensities. Nevertheless, we are able to identify certain parameter regions where non-linear enhancement is achieved, corresponding to situations where emission from different spots constructively interferes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
  2. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
  3. T. R. Kirkpatrick, Phys. Rev. B 31, 5746 (1985).
  4. S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).
  5. H. J. Kimble, Nature 453, 1023 (2008).
  6. A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
  7. A. Reiserer, Rev. Mod. Phys. 94, 041003 (2022).
  8. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013a).
  9. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
  10. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Physics Today 5, 44 (2008).
  11. J. von Neumann and E. P. Wigner, Über merkwürdige diskrete eigenwerte, in The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, edited by A. S. Wightman (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993) pp. 291–293.
  12. S. Sugimoto, Y. Ashida, and M. Ueda, Many-body bound states in the continuum (2023), arXiv:2307.05456 [quant-ph] .
  13. A. Gonzalez-Tudela, New Journal of Physics 24, 043001 (2022).
  14. P. N. Butcher and D. Cotter, The elements of nonlinear optics, Cambridge Studies in Modern Optics (Cambridge University Press, 2008).
  15. S. Fan, W. Suh, and J. D. Joannopoulos, JOSA A 20, 569 (2003).
  16. D. Walls and G. Milburn, Quantum Optics (Springer Berlin Heidelberg, 2008).
  17. Codes to reproduce the results of this manuscript are available at: https://github.com/albertomdlh/non-linear-localization.
  18. A. González-Tudela and J. I. Cirac, Phys. Rev. Lett. 119, 143602 (2017a).
  19. A. González-Tudela and J. I. Cirac, Phys. Rev. A 96, 043811 (2017b).
  20. W. L. Barnes, S. A. R. Horsley, and W. L. Vos, Journal of Optics 22, 073501 (2020).
  21. T. Baba, Nature Photonics 2, 465 (2008).
  22. P. K. Shukla and J. J. Rasmussen, Opt. Lett. 11, 171 (1986).
  23. M. Nakazawa, K. Suzuki, and H. A. Haus, Phys. Rev. A 38, 5193 (1988).
  24. S. Trillo and S. Wabnitz, Opt. Lett. 16, 986 (1991).
  25. I. Carusotto and C. Ciuti, Phys. Rev. Lett. 93, 166401 (2004).
  26. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013b).
  27. N. Ashcroft and D. Mermin, Solid State Physics (Harcourt College Publishers, 1976) p. 95.
  28. K. P. Kalinin and N. G. Berloff, Phys. Rev. Lett. 121, 235302 (2018).
  29. K. P. Kalinin and N. G. Berloff, Phys. Rev. B 10, 245306 (2019).
  30. A. Muñoz de las Heras and I. Carusotto, Phys. Rev. A 104, 043501 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We're still in the process of identifying open problems mentioned in this paper. Please check back in a few minutes.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 23 likes.

Upgrade to Pro to view all of the tweets about this paper: