Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Comprehensive Survey on Deep-Learning-based Vehicle Re-Identification: Models, Data Sets and Challenges

Published 19 Jan 2024 in cs.CV, cs.AI, cs.LG, and eess.IV | (2401.10643v1)

Abstract: Vehicle re-identification (ReID) endeavors to associate vehicle images collected from a distributed network of cameras spanning diverse traffic environments. This task assumes paramount importance within the spectrum of vehicle-centric technologies, playing a pivotal role in deploying Intelligent Transportation Systems (ITS) and advancing smart city initiatives. Rapid advancements in deep learning have significantly propelled the evolution of vehicle ReID technologies in recent years. Consequently, undertaking a comprehensive survey of methodologies centered on deep learning for vehicle re-identification has become imperative and inescapable. This paper extensively explores deep learning techniques applied to vehicle ReID. It outlines the categorization of these methods, encompassing supervised and unsupervised approaches, delves into existing research within these categories, introduces datasets and evaluation criteria, and delineates forthcoming challenges and potential research directions. This comprehensive assessment examines the landscape of deep learning in vehicle ReID and establishes a foundation and starting point for future works. It aims to serve as a complete reference by highlighting challenges and emerging trends, fostering advancements and applications in vehicle ReID utilizing deep learning models.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.