Microwave single-photon detection using a hybrid spin-optomechanical quantum interface (2401.10455v2)
Abstract: Semiconductor single-photon detectors cannot be straightforwardly adapted for the microwave regime, primarily because microwave photons carry far less energy and thus require cryogenic temperatures and specialized architectures. Here, we propose a hybrid spin-optomechanical interface to detect single microwave photons where the microwave photons are coupled to a phononic resonator via piezoelectric actuation. This phononic cavity also acts as a photonic cavity with either a single embedded Silicon-Vacancy (SiV) center in diamond or an ensemble of these centers, bridging optical single-photon detection protocols into the microwave domain. We model the detection process as a communication channel whose capacity is quantified by the mutual information (I(A;B)) between the true photon occupancy (A) and the detector outcome (B). Depending on experimentally achievable parameters, simulations predict (I(A;B)) in the range (0.57\,\ln(2)) to (0.67\,\ln(2)), corresponding to true-positive (detection) probabilities above 90\% and false-positive (dark count) probabilities below 10\% per detection interval. These results suggest a viable path to low-noise, high-efficiency single-photon detection at microwave frequencies.
- Photon antibunching in resonance fluorescence. \JournalTitlePhys. Rev. Lett. 39, 691–695, DOI: 10.1103/PhysRevLett.39.691 (1977).
- Experimental realization of a localized one-photon state. \JournalTitlePhys. Rev. Lett. 56, 58–60, DOI: 10.1103/PhysRevLett.56.58 (1986).
- Beveratos, A. et al. Single photon quantum cryptography. \JournalTitlePhys. Rev. Lett. 89, 187901, DOI: 10.1103/PhysRevLett.89.187901 (2002).
- Uppu, R. et al. Scalable integrated single-photon source. \JournalTitleScience Advances 6, DOI: 10.1126/sciadv.abc8268 (2020).
- Zoller, P. et al. Quantum information processing and communication. \JournalTitleEur. Phys. J. D 36, 203–228 (2005).
- Ekert, A. K. Quantum cryptography based on bell’s theorem. \JournalTitlePhys. Rev. Lett. 67, 661–663, DOI: 10.1103/PhysRevLett.67.661 (1991).
- Quantum state transfer and entanglement distribution among distant nodes in a quantum network. \JournalTitlePhys. Rev. Lett. 78, 3221–3224, DOI: 10.1103/PhysRevLett.78.3221 (1997).
- Long-distance quantum communication with atomic ensembles and linear optics. \JournalTitleNature 414, 413–418, DOI: 10.1038/35106500 (2001).
- Spiller, T. P. et al. Quantum computation by communication. \JournalTitleNew Journal of Physics 8, 30–30, DOI: 10.1088/1367-2630/8/2/030 (2006).
- Quantum-enhanced measurements: Beating the standard quantum limit. \JournalTitleScience 306, 1330–1336, DOI: 10.1126/science.1104149 (2004).
- Kimble, H. J. The quantum internet. \JournalTitleNature 453, 1023–1030, DOI: 10.1038/nature07127 (2008).
- Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2012).
- Hadfield, R. H. Single-photon detectors for optical quantum information applications. \JournalTitleNat. Photonics 3, 696–705 (2009).
- Invited review article: Single-photon sources and detectors. \JournalTitleRev. Sci. Instrum. 82, 071101 (2011).
- Bergeal, N. et al. Analog information processing at the quantum limit with a josephson ring modulator (2009). 0805.3452.
- Macklin, C. et al. A near-quantum-limited josephson traveling-wave parametric amplifier. \JournalTitleScience 350, 307–310 (2015).
- Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. \JournalTitleNat. Phys. 9, 345–348 (2013).
- Microwave photonics with superconducting quantum circuits. \JournalTitlePhys. Rep. 718-719, 1–102 (2017).
- Microwave photon detector in circuit qed. \JournalTitlePhys. Rev. Lett. 102, 173602, DOI: 10.1103/PhysRevLett.102.173602 (2009).
- Peropadre, B. et al. Approaching perfect microwave photodetection in circuit qed. \JournalTitlePhys. Rev. A 84, 063834, DOI: 10.1103/PhysRevA.84.063834 (2011).
- Balembois, L. et al. Practical single microwave photon counter with 10−22superscript102210^{\mathrm{-22}}10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT W/HzWHz\mathrm{W/\sqrt{Hz}}roman_W / square-root start_ARG roman_Hz end_ARG sensitivity (2023). 2307.03614.
- Chen, Y.-F. et al. Microwave photon counter based on josephson junctions. \JournalTitlePhys. Rev. Lett. 107, 217401, DOI: 10.1103/PhysRevLett.107.217401 (2011).
- Detecting itinerant single microwave photons. \JournalTitleC. R. Phys. 17, 756–765 (2016).
- Inomata, K. et al. Single microwave-photon detector using an artificial ΛΛ\Lambdaroman_Λ-type three-level system. \JournalTitleNat. Commun. 7, 12303 (2016).
- Microwave photodetection with electro-opto-mechanical systems (2014). 1410.4024.
- Cornia, S. et al. Calibration‐free and high‐sensitivity microwave detectors based on InAs/InP nanowire double quantum dots. \JournalTitleAdv. Funct. Mater. 33 (2023).
- Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot. \JournalTitlePhys. Rev. A (Coll. Park.) 95 (2017).
- Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. \JournalTitlePhys. Rev. Lett. 119, 223602, DOI: 10.1103/PhysRevLett.119.223602 (2017).
- Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. \JournalTitlePhysical Review Applied 13, DOI: 10.1103/physrevapplied.13.014027 (2020).
- Li, P.-B. et al. Hybrid quantum device based onNVCenters in diamond nanomechanical resonators plus superconducting waveguide cavities. \JournalTitlePhys. Rev. Appl. 4 (2015).
- Detecting single microwave photons with NV centers in diamond. \JournalTitleMaterials (Basel) 16 (2023).
- Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. \JournalTitleNat. Commun. 11, 193 (2020).
- Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. \JournalTitlePhys. Rev. B 97, 205444, DOI: 10.1103/PhysRevB.97.205444 (2018).
- Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. \JournalTitleNpj Quantum Inf. 7 (2021).
- Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. \JournalTitlePhys. Rev. B 100, 165428, DOI: 10.1103/PhysRevB.100.165428 (2019).
- Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. \JournalTitleNature 580, 60–64 (2020).
- Single-shot optical readout of a quantum bit using cavity quantum electrodynamics. \JournalTitlePhysical Review A 94, DOI: 10.1103/physreva.94.012307 (2016).
- Cavity-enhanced optical readout of a single solid-state spin. \JournalTitlePhysical Review Applied 9, DOI: 10.1103/physrevapplied.9.054013 (2018).
- Mutual information applied to anomaly detection. \JournalTitleJournal of Communications and Networks 10, 89–97, DOI: 10.1109/JCN.2008.6388332 (2008).
- Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble. \JournalTitleOptics Express 25, 30149, DOI: 10.1364/oe.25.030149 (2017).
- Johansson, P. N. . J. QuTiP - Quantum Toolbox in Python — qutip.org. https://qutip.org/.
- GitHub - panand2257/Single-Photon-Detection: Single MW photon detection — github.com. https://github.com/panand2257/Single-Photon-Detection (2024).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.