Papers
Topics
Authors
Recent
2000 character limit reached

Microwave single-photon detection using a hybrid spin-optomechanical quantum interface (2401.10455v2)

Published 19 Jan 2024 in quant-ph

Abstract: Semiconductor single-photon detectors cannot be straightforwardly adapted for the microwave regime, primarily because microwave photons carry far less energy and thus require cryogenic temperatures and specialized architectures. Here, we propose a hybrid spin-optomechanical interface to detect single microwave photons where the microwave photons are coupled to a phononic resonator via piezoelectric actuation. This phononic cavity also acts as a photonic cavity with either a single embedded Silicon-Vacancy (SiV) center in diamond or an ensemble of these centers, bridging optical single-photon detection protocols into the microwave domain. We model the detection process as a communication channel whose capacity is quantified by the mutual information (I(A;B)) between the true photon occupancy (A) and the detector outcome (B). Depending on experimentally achievable parameters, simulations predict (I(A;B)) in the range (0.57\,\ln(2)) to (0.67\,\ln(2)), corresponding to true-positive (detection) probabilities above 90\% and false-positive (dark count) probabilities below 10\% per detection interval. These results suggest a viable path to low-noise, high-efficiency single-photon detection at microwave frequencies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Photon antibunching in resonance fluorescence. \JournalTitlePhys. Rev. Lett. 39, 691–695, DOI: 10.1103/PhysRevLett.39.691 (1977).
  2. Experimental realization of a localized one-photon state. \JournalTitlePhys. Rev. Lett. 56, 58–60, DOI: 10.1103/PhysRevLett.56.58 (1986).
  3. Beveratos, A. et al. Single photon quantum cryptography. \JournalTitlePhys. Rev. Lett. 89, 187901, DOI: 10.1103/PhysRevLett.89.187901 (2002).
  4. Uppu, R. et al. Scalable integrated single-photon source. \JournalTitleScience Advances 6, DOI: 10.1126/sciadv.abc8268 (2020).
  5. Zoller, P. et al. Quantum information processing and communication. \JournalTitleEur. Phys. J. D 36, 203–228 (2005).
  6. Ekert, A. K. Quantum cryptography based on bell’s theorem. \JournalTitlePhys. Rev. Lett. 67, 661–663, DOI: 10.1103/PhysRevLett.67.661 (1991).
  7. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. \JournalTitlePhys. Rev. Lett. 78, 3221–3224, DOI: 10.1103/PhysRevLett.78.3221 (1997).
  8. Long-distance quantum communication with atomic ensembles and linear optics. \JournalTitleNature 414, 413–418, DOI: 10.1038/35106500 (2001).
  9. Spiller, T. P. et al. Quantum computation by communication. \JournalTitleNew Journal of Physics 8, 30–30, DOI: 10.1088/1367-2630/8/2/030 (2006).
  10. Quantum-enhanced measurements: Beating the standard quantum limit. \JournalTitleScience 306, 1330–1336, DOI: 10.1126/science.1104149 (2004).
  11. Kimble, H. J. The quantum internet. \JournalTitleNature 453, 1023–1030, DOI: 10.1038/nature07127 (2008).
  12. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2012).
  13. Hadfield, R. H. Single-photon detectors for optical quantum information applications. \JournalTitleNat. Photonics 3, 696–705 (2009).
  14. Invited review article: Single-photon sources and detectors. \JournalTitleRev. Sci. Instrum. 82, 071101 (2011).
  15. Bergeal, N. et al. Analog information processing at the quantum limit with a josephson ring modulator (2009). 0805.3452.
  16. Macklin, C. et al. A near-quantum-limited josephson traveling-wave parametric amplifier. \JournalTitleScience 350, 307–310 (2015).
  17. Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. \JournalTitleNat. Phys. 9, 345–348 (2013).
  18. Microwave photonics with superconducting quantum circuits. \JournalTitlePhys. Rep. 718-719, 1–102 (2017).
  19. Microwave photon detector in circuit qed. \JournalTitlePhys. Rev. Lett. 102, 173602, DOI: 10.1103/PhysRevLett.102.173602 (2009).
  20. Peropadre, B. et al. Approaching perfect microwave photodetection in circuit qed. \JournalTitlePhys. Rev. A 84, 063834, DOI: 10.1103/PhysRevA.84.063834 (2011).
  21. Balembois, L. et al. Practical single microwave photon counter with 10−22superscript102210^{\mathrm{-22}}10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT W/HzWHz\mathrm{W/\sqrt{Hz}}roman_W / square-root start_ARG roman_Hz end_ARG sensitivity (2023). 2307.03614.
  22. Chen, Y.-F. et al. Microwave photon counter based on josephson junctions. \JournalTitlePhys. Rev. Lett. 107, 217401, DOI: 10.1103/PhysRevLett.107.217401 (2011).
  23. Detecting itinerant single microwave photons. \JournalTitleC. R. Phys. 17, 756–765 (2016).
  24. Inomata, K. et al. Single microwave-photon detector using an artificial ΛΛ\Lambdaroman_Λ-type three-level system. \JournalTitleNat. Commun. 7, 12303 (2016).
  25. Microwave photodetection with electro-opto-mechanical systems (2014). 1410.4024.
  26. Cornia, S. et al. Calibration‐free and high‐sensitivity microwave detectors based on InAs/InP nanowire double quantum dots. \JournalTitleAdv. Funct. Mater. 33 (2023).
  27. Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot. \JournalTitlePhys. Rev. A (Coll. Park.) 95 (2017).
  28. Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. \JournalTitlePhys. Rev. Lett. 119, 223602, DOI: 10.1103/PhysRevLett.119.223602 (2017).
  29. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. \JournalTitlePhysical Review Applied 13, DOI: 10.1103/physrevapplied.13.014027 (2020).
  30. Li, P.-B. et al. Hybrid quantum device based onNVCenters in diamond nanomechanical resonators plus superconducting waveguide cavities. \JournalTitlePhys. Rev. Appl. 4 (2015).
  31. Detecting single microwave photons with NV centers in diamond. \JournalTitleMaterials (Basel) 16 (2023).
  32. Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. \JournalTitleNat. Commun. 11, 193 (2020).
  33. Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. \JournalTitlePhys. Rev. B 97, 205444, DOI: 10.1103/PhysRevB.97.205444 (2018).
  34. Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. \JournalTitleNpj Quantum Inf. 7 (2021).
  35. Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. \JournalTitlePhys. Rev. B 100, 165428, DOI: 10.1103/PhysRevB.100.165428 (2019).
  36. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. \JournalTitleNature 580, 60–64 (2020).
  37. Single-shot optical readout of a quantum bit using cavity quantum electrodynamics. \JournalTitlePhysical Review A 94, DOI: 10.1103/physreva.94.012307 (2016).
  38. Cavity-enhanced optical readout of a single solid-state spin. \JournalTitlePhysical Review Applied 9, DOI: 10.1103/physrevapplied.9.054013 (2018).
  39. Mutual information applied to anomaly detection. \JournalTitleJournal of Communications and Networks 10, 89–97, DOI: 10.1109/JCN.2008.6388332 (2008).
  40. Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble. \JournalTitleOptics Express 25, 30149, DOI: 10.1364/oe.25.030149 (2017).
  41. Johansson, P. N. . J. QuTiP - Quantum Toolbox in Python — qutip.org. https://qutip.org/.
  42. GitHub - panand2257/Single-Photon-Detection: Single MW photon detection — github.com. https://github.com/panand2257/Single-Photon-Detection (2024).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 46 likes about this paper.