Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

First-order thermodynamics of Horndeski cosmology (2401.10351v2)

Published 18 Jan 2024 in gr-qc

Abstract: We delve into the first-order thermodynamics of Horndeski gravity, focusing on spatially flat, homogeneous, and isotropic cosmologies. Our exploration begins with a comprehensive review of the effective fluid representation within viable Horndeski gravity. Notably, we uncover a surprising alignment between the constitutive relations governing the "Horndeski fluid" and those of Eckart's thermodynamics. Narrowing our focus, we specialize our discussion to spatially flat Friedmann-Lema{^i}tre-Robertson-Walker spacetimes. Within this specific cosmological framework, we systematically analyze two classes of theories: shift-symmetric and asymptotically shift-symmetric. These theories are characterized by a non-vanishing braiding parameter, adding a nuanced dimension to our investigation. On the one hand, unlike the case of the "traditional" scalar-tensor gravity, these peculiar subclasses of viable Horndeski gravity never relax to General Relativity (seen within this formalism as an equilibrium state at zero temperature), but give rise to additional equilibrium states with non-vanishing viscosity. On the other hand, this analysis further confirms previous findings according to which curvature singularities are "hot" and exhibit a diverging temperature, which suggests that deviations of scalar-tensor theories from General Relativity become extreme at spacetime singularities. Furthermore, we provide a novel exact cosmological solution for an asymptotically shift-symmetric theory as a toy model for our thermodynamic analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. R. Brandenberger and P. Peter, Found. Phys. 47, 797 (2017), arXiv:1603.05834 [hep-th] .
  2. L. Amendola and S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, 2015).
  3. L. Heisenberg, Phys. Rept. 796, 1 (2019), arXiv:1807.01725 [gr-qc] .
  4. G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
  5. T. Kobayashi, Rept. Prog. Phys. 82, 086901 (2019), arXiv:1901.07183 [gr-qc] .
  6. D. Langlois and K. Noui, JCAP 02, 034 (2016), arXiv:1510.06930 [gr-qc] .
  7. R. C. Bernardo and I. Vega, JCAP 10, 058 (2019), arXiv:1903.12578 [gr-qc] .
  8. C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
  9. P. G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968).
  10. R. V. Wagoner, Phys. Rev. D 1, 3209 (1970).
  11. K. Nordtvedt, Jr., Astrophys. J. 161, 1059 (1970).
  12. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010), arXiv:0805.1726 [gr-qc] .
  13. A. De Felice and S. Tsujikawa, Phys. Rev. Lett. 105, 111301 (2010), arXiv:1007.2700 [astro-ph.CO] .
  14. C. de Rham and L. Heisenberg, Phys. Rev. D 84, 043503 (2011), arXiv:1106.3312 [hep-th] .
  15. A. R. Gomes and L. Amendola, JCAP 02, 035 (2016), arXiv:1511.01004 [gr-qc] .
  16. R. Gannouji and M. Sami, Phys. Rev. D 82, 024011 (2010), arXiv:1004.2808 [gr-qc] .
  17. V. Faraoni and A. Giusti, Phys. Rev. D 103, L121501 (2021), arXiv:2103.05389 [gr-qc] .
  18. S. Giardino and A. Giusti (2023) arXiv:2306.01580 [gr-qc] .
  19. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995), arXiv:gr-qc/9504004 .
  20. V. Faraoni and J. Coté, Phys. Rev. D 98, 084019 (2018), arXiv:1808.02427 [gr-qc] .
  21. L. O. Pimentel, Class. Quant. Grav. 6, L263 (1989).
  22. B. P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017a), arXiv:1710.05833 [astro-ph.HE] .
  23. P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017), arXiv:1710.05877 [astro-ph.CO] .
  24. J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. Lett. 119, 251304 (2017), arXiv:1710.05901 [astro-ph.CO] .
  25. C. de Rham and S. Melville, Phys. Rev. Lett. 121, 221101 (2018), arXiv:1806.09417 [hep-th] .
  26. T. Damour and K. Nordtvedt, Phys. Rev. Lett. 70, 2217 (1993a).
  27. T. Damour and K. Nordtvedt, Phys. Rev. D 48, 3436 (1993b).
  28. J. Noller and A. Nicola, Phys. Rev. D 99, 103502 (2019), arXiv:1811.12928 [astro-ph.CO] .
  29. E. Bellini and I. Sawicki, JCAP 07, 050 (2014), arXiv:1404.3713 [astro-ph.CO] .
  30. D. Bettoni and M. Zumalacárregui, Phys. Rev. D 91, 104009 (2015), arXiv:1502.02666 [gr-qc] .
  31. V. Faraoni and J. Houle, Eur. Phys. J. C 83, 521 (2023), arXiv:2302.01442 [gr-qc] .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: