Papers
Topics
Authors
Recent
2000 character limit reached

Hybrid Quantum Solvers in Production: how to succeed in the NISQ era? (2401.10302v8)

Published 18 Jan 2024 in cs.ET and quant-ph

Abstract: Hybrid quantum computing is considered the present and the future within the field of quantum computing. Far from being a passing fad, this trend cannot be considered just a stopgap to address the limitations of NISQ-era devices. The foundations linking both computing paradigms will remain robust over time. The contribution of this work is twofold: first, we describe and categorize some of the most frequently used hybrid solvers, resorting to two different taxonomies recently published in the literature. Secondly, we put a special focus on two solvers that are currently deployed in real production and that have demonstrated to be near the real industry. These solvers are the LeapHybridBQMSampler contained in D-Wave's Hybrid Solver Service and Quantagonia's Hybrid Solver. We analyze the performance of both methods using as benchmarks four combinatorial optimization problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Z. C. Seskir, S. Umbrello, C. Coenen, and P. E. Vermaas, “Democratization of quantum technologies,” Quantum Science and Technology, vol. 8, no. 2, p. 024005, 2023.
  2. J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
  3. A. Callison and N. Chancellor, “Hybrid quantum-classical algorithms in the noisy intermediate-scale quantum era and beyond,” Physical Review A, vol. 106, no. 1, p. 010101, 2022.
  4. F. Phillipson, N. Neumann, and R. Wezeman, “Classification of hybrid quantum-classical computing,” in International Conference on Computational Science.   Springer, 2023, pp. 18–33.
  5. E. Villar-Rodriguez, A. Gomez-Tejedor, and E. Osaba, “Hybrid classical-quantum computing: Are we forgetting the classical part in the binomial?” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 2.   IEEE Computer Society, 2023, pp. 264–265.
  6. D-Wave Developers, “D-Wave Hybrid Solver Service: An Overview,” D-Wave Systems Inc., Tech. Rep. 14-1039A-B, 05 2020.
  7. E. Osaba and E. Villar-Rodriguez, “Qoptlib: a quantum computing oriented benchmark for combinatorial optimization problems,” in Benchmarks and Hybrid Algorithms in Optimization and Applications.   Springer, 2023, pp. 49–63.
  8. M. M. Flood, “The traveling-salesman problem,” Operations research, vol. 4, no. 1, pp. 61–75, 1956.
  9. S. Martello and P. Toth, “Bin-packing problem,” Knapsack problems: Algorithms and computer implementations, pp. 221–245, 1990.
  10. H. L. Bodlaender and K. Jansen, “On the complexity of the maximum cut problem,” Nordic Journal of Computing, vol. 7, no. 1, pp. 14–31, 2000.
  11. A. Ajagekar, K. Al Hamoud, and F. You, “Hybrid classical-quantum optimization techniques for solving mixed-integer programming problems in production scheduling,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–16, 2022.
  12. E. Osaba, E. Villar-Rodriguez, I. Oregi, and A. Moreno-Fernandez-de Leceta, “Hybrid quantum computing-tabu search algorithm for partitioning problems: preliminary study on the traveling salesman problem,” in 2021 IEEE Congress on Evolutionary Computation (CEC).   IEEE, 2021, pp. 351–358.
  13. F. Gao, G. Wu, S. Guo, W. Dai, and F. Shuang, “Solving dc power flow problems using quantum and hybrid algorithms,” Applied Soft Computing, vol. 137, p. 110147, 2023.
  14. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021.
  15. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature communications, vol. 5, no. 1, p. 4213, 2014.
  16. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
  17. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth et al., “The variational quantum eigensolver: a review of methods and best practices,” Physics Reports, vol. 986, pp. 1–128, 2022.
  18. K. Blekos, D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li, K. Pandya, and A. Summer, “A review on quantum approximate optimization algorithm and its variants,” arXiv preprint arXiv:2306.09198, 2023.
  19. F. Glover, “Tabu search: A tutorial,” Interfaces, vol. 20, no. 4, pp. 74–94, 1990.
  20. A. Teplukhin, B. K. Kendrick, S. M. Mniszewski, S. Tretiak, and P. A. Dub, “Sampling electronic structure quadratic unconstrained binary optimization problems (qubos) with ocean and mukai solvers,” Plos one, vol. 17, no. 2, p. e0263849, 2022.
  21. B. Wang, X. Yang, and D. Zhang, “Research on quantum annealing integer factorization based on different columns,” Frontiers in Physics, vol. 10, p. 914578, 2022.
  22. U. Tosun, “A new tool for automated transformation of quadratic assignment problem instances to quadratic unconstrained binary optimisation models,” Expert Systems with Applications, vol. 201, p. 116953, 2022.
  23. D-Wave Developers, “D-Wave Hybrid,” D-Wave Systems Inc., Tech. Rep. 0.6.10, 12 2022.
  24. D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statistical science, vol. 8, no. 1, pp. 10–15, 1993.
  25. G. Malviya, B. AkashNarayanan, and J. Seshadri, “Logistics network optimization using quantum annealing,” in International Conference on Emerging Trends and Technologies on Intelligent Systems.   Springer, 2023, pp. 401–413.
  26. E. Stogiannos, C. Papalitsas, and T. Andronikos, “Experimental analysis of quantum annealers and hybrid solvers using benchmark optimization problems,” Mathematics, vol. 10, no. 8, p. 1294, 2022.
  27. A. Glos, A. Kundu, and Ö. Salehi, “Optimizing the production of test vehicles using hybrid constrained quantum annealing,” SN Computer Science, vol. 4, no. 5, p. 609, 2023.
  28. G. Colucci, S. van der Linde, and F. Phillipson, “Power network optimization: a quantum approach,” IEEE Access, 2023.
  29. S. V. Romero, E. Osaba, E. Villar-Rodriguez, I. Oregi, and Y. Ban, “Hybrid approach for solving real-world bin packing problem instances using quantum annealers,” Scientific Reports, vol. 13, no. 1, p. 11777, 2023.
  30. D-Wave Developers, “Measuring Performance of the Leap Constrained Quadratic Model Solver,” D-Wave Systems Inc., Tech. Rep. 14-1065A-A, 11 2022.
  31. E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations research, vol. 14, no. 4, pp. 699–719, 1966.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.