On the locality of qubit encodings of local fermionic modes (2401.10077v3)
Abstract: Known mappings that encode fermionic modes into a bosonic qubit system are non-local transformations. In this paper we establish that this must necessarily be the case, if the locality graph is complex enough (for example for regular 2$d$ lattices). In particular we show that, in case of exact encodings, a fully local mapping is possible if and only if the locality graph is a tree. If instead we allow ourselves to also consider operators that only act fermionically on a subspace of the qubit Hilbert space, then we show that this subspace must be composed of long range entangled states, if the locality graph contains at least two overlapping cycles. This implies, for instance, that on 2$d$ lattices there exist states that are of low depth from the fermionic point of view, while in any encoding require a circuit of depth at least proportional to the system size to be prepared.
- S. B. Bravyi and A. Yu. Kitaev, Annals of Physics 298, 210 (2002).
- S. Lloyd, Unconventional Quantum Computing Devices (2000), arXiv:quant-ph/0003151.
- P. Jordan and E. Wigner, Zeitschrift für Physik 47, 631 (1928).
- F. Verstraete and J. I. Cirac, Journal of Statistical Mechanics: Theory and Experiment 2005, P09012 (2005).
- R. C. Ball, Physical Review Letters 95, 176407 (2005).
- J. Wosiek, Acta Physica Polonica B 13, 543 (1982).
- A. M. Szczerba, Communications in Mathematical Physics 98, 513 (1985).
- J. D. Whitfield, V. Havlíček, and M. Troyer, Physical Review A 94, 030301 (2016).
- V. Havlíček, M. Troyer, and J. D. Whitfield, Physical Review A 95, 032332 (2017).
- Y.-A. Chen, A. Kapustin, and D. Radičević, Annals of Physics 393, 234 (2018).
- K. Li and H. C. Po, Physical Review B 106, 115109 (2022).
- R. W. Chien and J. Klassen, Optimizing fermionic encodings for both Hamiltonian and hardware (2022), arXiv:2210.05652 [quant-ph].
- Y.-A. Chen and Y. Xu, PRX Quantum 4, 010326 (2023).
- J. Nys and G. Carleo, Quantum 7, 930 (2023).
- D. S. França and R. García-Patrón, Nature Physics 17, 1221 (2021).
- H. J. Briegel and R. Raussendorf, Physical Review Letters 86, 910 (2001).
- C. Meignant, D. Markham, and F. Grosshans, Physical Review A 100, 052333 (2019).
- R. Raussendorf, S. Bravyi, and J. Harrington, Physical Review A 71, 062313 (2005).
- L. Piroli, G. Styliaris, and J. I. Cirac, Physical Review Letters 127, 220503 (2021).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.