Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Algorithm for differential equations for Feynman integrals in general dimensions (2401.09908v2)

Published 18 Jan 2024 in hep-th, hep-ph, math-ph, and math.MP

Abstract: We present an algorithm for determining the minimal order differential equations associated to a given Feynman integral in dimensional or analytic regularisation. The algorithm is an extension of the Griffiths-Dwork pole reduction adapted to the case of twisted differential forms. In dimensional regularisation, we demonstrate the applicability of this algorithm by explicitly providing the inhomogeneous differential equations for the multiloop two-point sunset integrals: up to 20 loops for the equal mass case, the generic mass case at two- and three-loop orders. Additionally, we derive the differential operators for various infrared-divergent two-loop graphs. In the analytic regularisation case, we apply our algorithm for deriving a system of partial differential equations for regulated Witten diagrams, which arise in the evaluation of cosmological correlators of conformally coupled $\phi4$ theory in four-dimensional de Sitter space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (87)
  1. V. A. Golubeva, “Some Problems In The Analytic Theory Of Feynman Integrals” , Russ. Math. Surv. 31 139 (1976)
  2. F. Pham, “Introduction à l’étude topologique des singularités de Landau”, Paris : Gauthier-Villars; 1967
  3. E. Panzer, “Feynman Integrals and Hyperlogarithms,” Thesis: PhD Humboldt U. (2015) [arXiv:1506.07243 [math-ph]].
  4. C. Duhr, “Function Theory for Multiloop Feynman Integrals,” Ann. Rev. Nucl. Part. Sci. 69 (2019), 15-39
  5. S. Mizera, “Status of Intersection Theory and Feynman Integrals,” PoS MA2019 (2019), 016 [arXiv:2002.10476 [hep-th]].
  6. Stefan Weinzierl. Quantum field theory. In Feynman Integrals: A Comprehensive Treatment for Students and Researchers, pages 101–133. Springer, 2022. [arXiv:2201.03593]
  7. S. Badger, J. Henn, J. C. Plefka and S. Zoia, “Scattering Amplitudes in Quantum Field Theory,” Lect. Notes Phys. 1021 (2024), pp. [arXiv:2306.05976 [hep-th]].
  8. C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, “Motivic Geometry of Two-Loop Feynman Integrals,” [arXiv:2302.14840 [math.AG]].
  9. Francis Brown. On the periods of some Feynman integrals. 10 2009. [arXiv:0910.0114]
  10. A Feynman integral via higher normal functions. Compos. Math., 151(12):2329–2375, 2015. [arXiv:1406.2664]
  11. Local mirror symmetry and the sunset Feynman integral. Adv. Theor. Math. Phys., 21:1373–1453, 2017. [arXiv:1601.08181]
  12. J. L. Bourjaily, Y. H. He, A. J. Mcleod, M. Von Hippel and M. Wilhelm, “Traintracks Through Calabi–Yau Manifolds: Scattering Amplitudes Beyond Elliptic Polylogarithms,” Phys. Rev. Lett. 121 (2018) no.7, 071603 [arXiv:1805.09326 [hep-th]].
  13. J. L. Bourjaily, A. J. McLeod, C. Vergu, M. Volk, M. Von Hippel and M. Wilhelm, “Embedding Feynman Integral (Calabi-Yau) Geometries in Weighted Projective Space,” JHEP 01 (2020), 078 [arXiv:1910.01534 [hep-th]].
  14. J. L. Bourjaily, A. J. McLeod, M. von Hippel and M. Wilhelm, “Bounded Collection of Feynman Integral Calabi–Yau Geometries,” Phys. Rev. Lett. 122 (2019) no.3, 031601 [arXiv:1810.07689 [hep-th]].
  15. A. Klemm, C. Nega and R. Safari, “The l𝑙litalic_l-loop Banana Amplitude from Gkz Systems and Relative Calabi-Yau Periods,” JHEP 04 (2020), 088 [arXiv:1912.06201 [hep-th]].
  16. K. Bönisch, F. Fischbach, A. Klemm, C. Nega and R. Safari, “Analytic structure of all loop banana integrals,” JHEP 05 (2021), 066 [arXiv:2008.10574 [hep-th]].
  17. K. Bönisch, C. Duhr, F. Fischbach, A. Klemm and C. Nega, “Feynman Integrals in Dimensional Regularization and Extensions of Calabi-Yau Motives,” JHEP 09 (2022), 156 [arXiv:2108.05310 [hep-th]].
  18. A. Forum and M. von Hippel, “A Symbol and Coaction for Higher-Loop Sunrise Integrals,” SciPost Phys. Core 6 (2023), 050 [arXiv:2209.03922 [hep-th]].
  19. C. Duhr, A. Klemm, F. Loebbert, C. Nega and F. Porkert, “Yangian-Invariant Fishnet Integrals in Two Dimensions as Volumes of Calabi-Yau Varieties,” Phys. Rev. Lett. 130 (2023) no.4, 4 [arXiv:2209.05291 [hep-th]].
  20. H. Frellesvig, R. Morales, and M. Wilhelm “Calabi-Yau meets Gravity: A Calabi-Yau three-fold at fifth post-Minkowskian order,” [arXiv:2312.11371 [hep-th]].
  21. S. Pögel, X. Wang and S. Weinzierl, “Feynman Integrals, Geometries and Differential Equations,” [arXiv:2309.07531 [hep-th]].
  22. A. Klemm, C. Nega, B. Sauer and J. Plefka, “Cy in the Sky,” [arXiv:2401.07899 [hep-th]].
  23. T. Heckelbacher, I. Sachs, E. Skvortsov and P. Vanhove, “Analytical Evaluation of Cosmological Correlation Functions,” JHEP 08 (2022), 139 [arXiv:2204.07217 [hep-th]].
  24. T. Heckelbacher, I. Sachs, E. Skvortsov and P. Vanhove, “Analytical Evaluation of AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT Witten Diagrams as Flat Space Multi-Loop Feynman Integrals,” JHEP 08 (2022), 052 [arXiv:2201.09626 [hep-th]].
  25. C. Chowdhury, A. Lipstein, J. Mei, I. Sachs and P. Vanhove, “The Subtle Simplicity of Cosmological Correlators,” [arXiv:2312.13803 [hep-th]].
  26. P. A. Griffiths. On the periods of certain rational integrals. Ann. of Math., 90 (1969), 460–541.
  27. Griffiths, P.A.: “The Residue Calculus And Some Transcendental Results In Algebraic Geometry, II”. Proceedings of the National Academy of Sciences. 55, 1392-1395 (1966).
  28. B. Dwork. On the zeta function of a hypersurface. Inst. Hautes Études Sci. Publ. Math. 12 (1962) 5–68.
  29. B. Dwork. On the zeta function of a hypersurface: II. Ann. of Math., 80 (1964) 227–299.
  30. P. Vanhove, “Feynman Integrals, Toric Geometry and Mirror Symmetry,” [arXiv:1807.11466 [hep-th]].
  31. P. Lairez and P. Vanhove, “Algorithms for Minimal Picard-Fuchs Operators of Feynman Integrals,” Lett. Math. Phys. 113 (2023) no.2, 37 [arXiv:2209.10962 [hep-th]].
  32. Noboru Nakanishi, Graph theory and Feynman integrals, volume 11. Routledge, 1971.
  33. P. Vanhove, “The Physics and the Mixed Hodge Structure of Feynman Integrals,” Proc. Symp. Pure Math. 88 (2014), 161-194 [arXiv:1401.6438 [hep-th]].
  34. C. Bogner and S. Weinzierl, “Feynman Graph Polynomials,” Int. J. Mod. Phys. A 25 (2010), 2585-2618 [arXiv:1002.3458 [hep-ph]].
  35. On motives associated to graph polynomials. Communications in mathematical physics, 267(1):181–225, 2006. [arXiv:math/0510011]
  36. E. R. Speer, “Generalized Feynman Amplitudes,” vol. 62 of Annals of Mathematics Studies. Princeton University Press, New Jersey, Apr., 1969.
  37. K. Aomoto, “Les équations aux différences linéaires et les intégrales des fonctions multiformes”, J. Fac. Sci. Univ. Tokyo, 22(3), 271-297 (1975)
  38. K. Aomoto, “On vanishing of cohomology attached to certain many valued meromorphic functions”, J. Math. Soc. Japan 27(2): 248-255 (1975)
  39. K. Aomoto, “Configurations and Invariant Gauss-Manin Connections of Integrals I.” Tokyo Journal of Mathematics 5, 249-287.
  40. K. Aomoto, K. and M. Kita, , “Theory of Hypergeometric Functions,” Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2011.
  41. S. Mizera, “Scattering Amplitudes from Intersection Theory,” Phys. Rev. Lett. 120 (2018) no.14, 141602 [arXiv:1711.00469 [hep-th]].
  42. H. Frellesvig, F. Gasparotto, M. K. Mandal, P. Mastrolia, L. Mattiazzi and S. Mizera, “Vector Space of Feynman Integrals and Multivariate Intersection Numbers,” Phys. Rev. Lett. 123 (2019) no.20, 201602 [arXiv:1907.02000 [hep-th]].
  43. S. L. Cacciatori, M. Conti and S. Trevisan, “Co-Homology of Differential Forms and Feynman Diagrams,” Universe 7 (2021) no.9, 328 [arXiv:2107.14721 [hep-th]].
  44. H. J. Munch, “Evaluating Feynman Integrals Using D-modules and Tropical Geometry,” [arXiv:2401.00891 [hep-th]].
  45. G. Brunello, V. Chestnov, G. Crisanti, H. Frellesvig, M. K. Mandal and P. Mastrolia, “Intersection Numbers, Polynomial Division and Relative Cohomology,” [arXiv:2401.01897 [hep-th]].
  46. T. Teschke, “General Relativity from Intersection Theory and Loop Integrals,” [arXiv:2401.01920 [hep-th]].
  47. T. Bitoun, C. Bogner, R. P. Klausen and E. Panzer, “Feynman Integral Relations from Parametric Annihilators,” Lett. Math. Phys. 109 (2019) no.3, 497-564 [arXiv:1712.09215 [hep-th]].
  48. A. V. Smirnov and A. V. Petukhov, “The Number of Master Integrals is Finite,” Lett. Math. Phys. 97 (2011), 37-44 [arXiv:1004.4199 [hep-th]].
  49. R. N. Lee and A. A. Pomeransky, “Critical Points and Number of Master Integrals,” JHEP 11 (2013), 165 [arXiv:1308.6676 [hep-ph]].
  50. Picard–Fuchs equations for Feynman integrals. Communications in Mathematical Physics, 326(1):237–249, 2014. [arXiv:1212.4389]
  51. L. de la Cruz, “Feynman Integrals as A-Hypergeometric Functions,” JHEP 12 (2019), 123 [arXiv:1907.00507 [math-ph]].
  52. R. P. Klausen, “Hypergeometric Series Representations of Feynman Integrals by Gkz Hypergeometric Systems,” JHEP 04 (2020), 121 [arXiv:1910.08651 [hep-th]].
  53. T. F. Feng, C. H. Chang, J. B. Chen and H. B. Zhang, “Gkz-Hypergeometric Systems for Feynman Integrals,” Nucl. Phys. B 953 (2020), 114952 [arXiv:1912.01726 [hep-th]].
  54. B. Ananthanarayan, S. Banik, S. Bera and S. Datta, “Feyngkz: a Mathematica Package for Solving Feynman Integrals Using Gkz Hypergeometric Systems,” Comput. Phys. Commun. 287 (2023), 108699 [arXiv:2211.01285 [hep-th]].
  55. D. Agostini, C. Fevola, A. L. Sattelberger and S. Telen, “Vector Spaces of Generalized Euler Integrals,” [arXiv:2208.08967 [math.AG]].
  56. S. J. Matsubara-Heo, S. Mizera and S. Telen, “Four lectures on Euler integrals,” SciPost Phys. Lect. Notes 75 (2023), 1 [arXiv:2306.13578 [math-ph]].
  57. H. J. Munch, “Feynman Integral Relations from Gkz Hypergeometric Systems,” PoS LL2022 (2022), 042 [arXiv:2207.09780 [hep-th]].
  58. R. P. Klausen, “Kinematic singularities of Feynman integrals and principal A-determinants,” JHEP 02 (2022), 004 [arXiv:2109.07584 [hep-th]].
  59. V. Chestnov, S. J. Matsubara-Heo, H. J. Munch and N. Takayama, “Restrictions of Pfaffian Systems for Feynman Integrals,” JHEP 11 (2023), 202 [arXiv:2305.01585 [hep-th]].
  60. C. Dlapa, M. Helmer, G. Papathanasiou and F. Tellander, “Symbol alphabets from the Landau singular locus,” JHEP 10 (2023), 161 [arXiv:2304.02629 [hep-th]].
  61. P. Mastrolia and S. Mizera, “Feynman Integrals and Intersection Theory,” JHEP 02 (2019), 139 [arXiv:1810.03818 [hep-th]].
  62. S. Müller-Stach, S. Weinzierl and R. Zayadeh, “A Second-Order Differential Equation for the Two-Loop Sunrise Graph with Arbitrary Masses,” Commun. Num. Theor. Phys. 6 (2012), 203-222 [arXiv:1112.4360 [hep-ph]].
  63. van Hoeij, M. "Factorization of Differential Operators with Rational Functions Coefficients." J. Symb. Comput. Vol. 24. (1997): 537-561.
  64. Symbolic-numeric factorization of differential operators. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ISSAC ’22, page 73-82, New York, NY, USA, 2022. Association for Computing Machinery. [arXiv:2205.08991]
  65. Alexandre Goyer. A Sage package for the symbolic-numeric factorization of linear differential operators. ACM Communications in Computer Algebra, 55(2):44–48, 2021.
  66. S. Bloch and P. Vanhove, “The elliptic dilogarithm for the sunset graph,” J. Number Theor. 148 (2015), 328-364 [arXiv:1309.5865 [hep-th]].
  67. T. Peraro, “Finiteflow: Multivariate Functional Reconstruction Using Finite Fields and Dataflow Graphs,” JHEP 07 (2019), 031 [arXiv:1905.08019 [hep-ph]].
  68. C. Koutschan. “HolonomicFunctions (user’s guide).” Technical Report 10-01, RISC Report Series, Johannes Kepler University, Linz, Austria, 2010. http://www.risc .jku.at/research/ combinat/software/HolonomicFunctions/.
  69. M. Caffo, H. Czyz, S. Laporta and E. Remiddi, “The Master Differential Equations for the Two Loop Sunrise Selfmass Amplitudes,” Nuovo Cim. A 111 (1998), 365-389 [arXiv:hep-th/9805118 [hep-th]].
  70. E. Remiddi and L. Tancredi, “Schouten Identities for Feynman Graph Amplitudes; the Master Integrals for the Two-Loop Massive Sunrise Graph,” Nucl. Phys. B 880 (2014), 343-377 [arXiv:1311.3342 [hep-ph]].
  71. L. Adams, C. Bogner and S. Weinzierl, “The Two-Loop Sunrise Graph with Arbitrary Masses,” J. Math. Phys. 54 (2013), 052303 [arXiv:1302.7004 [hep-ph]].
  72. S. Pögel, X. Wang and S. Weinzierl, “Bananas of Equal Mass: Any Loop, Any Order in the Dimensional Regularisation Parameter,” JHEP 04 (2023), 117 [arXiv:2212.08908 [hep-th]].
  73. E. Remiddi and L. Tancredi, “Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral,” Nucl. Phys. B 907 (2016), 400-444 [arXiv:1602.01481 [hep-ph]].
  74. D. J. Broadhurst, “The Master Two Loop Diagram With Masses,” Z. Phys. C 47 (1990), 115-124
  75. L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, “The Kite Integral to All Orders in Terms of Elliptic Polylogarithms,” J. Math. Phys. 57 (2016) no.12, 122302 [arXiv:1607.01571 [hep-ph]].
  76. P. Candelas, X. de la Ossa, P. Kuusela and J. McGovern, “Mirror Symmetry for Five-Parameter Hulek-Verrill Manifolds,” SciPost Phys. 15 (2023) no.4, 144 [arXiv:2111.02440 [hep-th]].
  77. S. Pögel, X. Wang and S. Weinzierl, “The Three-Loop Equal-Mass Banana Integral in ε𝜀\varepsilonitalic_ε-factorised Form with Meromorphic Modular Forms,” JHEP 09 (2022), 062 [arXiv:2207.12893 [hep-th]].
  78. S. Pögel, X. Wang and S. Weinzierl, “Taming Calabi-Yau Feynman Integrals: the Four-Loop Equal-Mass Banana Integral,” Phys. Rev. Lett. 130 (2023) no.10, 101601 [arXiv:2211.04292 [hep-th]].
  79. M. Y. Kalmykov and B. A. Kniehl, “Mellin-Barnes Representations of Feynman Diagrams, Linear Systems of Differential Equations, and Polynomial Solutions,” Phys. Lett. B 714 (2012), 103-109 [arXiv:1205.1697 [hep-th]].
  80. C. Fevola, S. Mizera and S. Telen, “Landau Singularities Revisited,” [arXiv:2311.14669 [hep-th]].
  81. H. Frellesvig and C. G. Papadopoulos, “Cuts of Feynman Integrals in Baikov Representation,” JHEP 1704 (2017) 083 [arXiv:1701.07356 [hep-ph]].
  82. R. Marzucca, A. J. McLeod, B. Page, S. Pögel and S. Weinzierl, “Genus Drop in Hyperelliptic Feynman Integrals,” [arXiv:2307.11497 [hep-th]].
  83. E. L. Ince, “Ordinary differential equations.” Courier Corporation (1956).
  84. Z. Bern and Y. t. Huang, “Basics of Generalized Unitarity,” J. Phys. A 44 (2011), 454003 [arXiv:1103.1869 [hep-th]].
  85. C. Chowdhury and K. Singh, “Analytic Results for Loop-Level Momentum Space Witten Diagrams,” JHEP 12 (2023), 109 [arXiv:2305.18529 [hep-th]].
  86. Frédéric Chyzak, “ extension of Zeilberger’s fast algorithm to general holonomic functions”, Discrete Mathematics, 217 (1-3) 115-134, 2000.
  87. Frédéric Chyzak, “Creative Telescoping for Parametrised Integration and Summation”, Les cours du CIRM, Vol. 2, no 1 (2011), Course no II, p. 1-37.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.