Papers
Topics
Authors
Recent
Search
2000 character limit reached

Applications of Machine Learning to Optimizing Polyolefin Manufacturing

Published 18 Jan 2024 in cs.LG and cs.CE | (2401.09753v1)

Abstract: This chapter is a preprint from our book by , focusing on leveraging ML in chemical and polyolefin manufacturing optimization. It's crafted for both novices and seasoned professionals keen on the latest ML applications in chemical processes. We trace the evolution of AI and ML in chemical industries, delineate core ML components, and provide resources for ML beginners. A detailed discussion on various ML methods is presented, covering regression, classification, and unsupervised learning techniques, with performance metrics and examples. Ensemble methods, deep learning networks, including MLP, DNNs, RNNs, CNNs, and transformers, are explored for their growing role in chemical applications. Practical workshops guide readers through predictive modeling using advanced ML algorithms. The chapter culminates with insights into science-guided ML, advocating for a hybrid approach that enhances model accuracy. The extensive bibliography offers resources for further research and practical implementation. This chapter aims to be a thorough primer on ML's practical application in chemical engineering, particularly for polyolefin production, and sets the stage for continued learning in subsequent chapters. Please cite the original work [169,170] when referencing.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.