Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Variational Inference of Latent Space Models for Dynamic Networks Using Bayesian P-Splines (2401.09715v1)

Published 18 Jan 2024 in stat.ME and stat.CO

Abstract: Latent space models (LSMs) are often used to analyze dynamic (time-varying) networks that evolve in continuous time. Existing approaches to Bayesian inference for these models rely on Markov chain Monte Carlo algorithms, which cannot handle modern large-scale networks. To overcome this limitation, we introduce a new prior for continuous-time LSMs based on Bayesian P-splines that allows the posterior to adapt to the dimension of the latent space and the temporal variation in each latent position. We propose a stochastic variational inference algorithm to estimate the model parameters. We use stochastic optimization to subsample both dyads and observed time points to design a fast algorithm that is linear in the number of edges in the dynamic network. Furthermore, we establish non-asymptotic error bounds for point estimates derived from the variational posterior. To our knowledge, this is the first such result for Bayesian estimators of continuous-time LSMs. Lastly, we use the method to analyze a large data set of international conflicts consisting of 4,456,095 relations from 2018 to 2022.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.