Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Phase Transition to RS: Cool, not Supercool (2401.09633v1)

Published 17 Jan 2024 in hep-ph, gr-qc, and hep-th

Abstract: Motivated by the warped conifold compactification, we model the infrared (IR) dynamics of confining gauge theories in a Randall-Sundrum (RS)-like setup by modifying the stabilizing Goldberger-Wise (GW) potential so that it becomes large (in magnitude) in the IR and back-reacts on the geometry. We study the high-temperature phase by considering a black brane background in which we calculate the entropy and free energy of the strongly back-reacted solution. As with Buchel's result for the conifold (arXiv:2103.15188), we find a minimum temperature beyond which the black brane phase is thermodynamically unstable. In the context of a phase transition to the confining background, our results suggest that the amount of supercooling that the metastable black brane phase undergoes can be limited. It also suggests the first-order phase transition (and the associated gravitational waves from bubble collision) is not universal. Our results therefore have important phenomenological implications for early universe model building in these scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. A. Buchel, “A bestiary of black holes on the conifold with fluxes,” JHEP 06 (2021) 102, arXiv:2103.15188 [hep-th].
  2. P. Creminelli, A. Nicolis, and R. Rattazzi, “Holography and the electroweak phase transition,” JHEP 03 (2002) 051, arXiv:hep-th/0107141.
  3. A. Buchel, “The quest for a conifold conformal order,” JHEP 08 (2022) 080, arXiv:2205.00612 [hep-th].
  4. H. A. Chamblin and H. S. Reall, “Dynamic dilatonic domain walls,” Nucl. Phys. B 562 (1999) 133–157, arXiv:hep-th/9903225.
  5. S. S. Gubser and A. Nellore, “Mimicking the QCD equation of state with a dual black hole,” Phys. Rev. D 78 (2008) 086007, arXiv:0804.0434 [hep-th].
  6. Z. Chacko, R. K. Mishra, and D. Stolarski, “Dynamics of a Stabilized Radion and Duality,” JHEP 09 (2013) 121, arXiv:1304.1795 [hep-ph].
  7. R. K. Mishra and L. Randall, “Consequences of a Stabilizing Field’s Self-Interactions for RS Cosmology,” arXiv:2309.10090 [hep-ph].
  8. S. S. Gubser, “Curvature singularities: The Good, the bad, and the naked,” Adv. Theor. Math. Phys. 4 (2000) 679–745, arXiv:hep-th/0002160.
  9. R. Zöllner and B. Kämpfer, “Phase structures emerging from holography with Einstein gravity – dilaton models at finite temperature,” Eur. Phys. J. Plus 135 no. 3, (2020) 304, arXiv:1807.04260 [hep-th].
  10. D. Bunk, J. Hubisz, and B. Jain, “A Perturbative RS I Cosmological Phase Transition,” Eur. Phys. J. C 78 no. 1, (2018) 78, arXiv:1705.00001 [hep-ph].
  11. I. R. Klebanov and M. J. Strassler, “Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities,” JHEP 08 (2000) 052, arXiv:hep-th/0007191.
  12. D. Elander, A. F. Faedo, D. Mateos, and J. G. Subils, “Phase transitions in a three-dimensional analogue of Klebanov-Strassler,” JHEP 06 (2020) 131, arXiv:2002.08279 [hep-th].
  13. S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space,” Commun. Math. Phys. 87 (1983) 577.
  14. L. G. Yaffe, “Large N𝑁Nitalic_N phase transitions and the fate of small Schwarzschild-AdS black holes,” Phys. Rev. D 97 no. 2, (2018) 026010, arXiv:1710.06455 [hep-th].
  15. A. W. Peet and S. F. Ross, “Microcanonical phases of string theory on AdS(m) x S**n,” JHEP 12 (1998) 020, arXiv:hep-th/9810200.
  16. T. Banks, M. R. Douglas, G. T. Horowitz, and E. J. Martinec, “AdS dynamics from conformal field theory,” arXiv:hep-th/9808016.
  17. V. E. Hubeny and M. Rangamani, “Unstable horizons,” JHEP 05 (2002) 027, arXiv:hep-th/0202189.
  18. O. J. C. Dias, J. E. Santos, and B. Way, “Lumpy AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT black holes and black belts,” JHEP 04 (2015) 060, arXiv:1501.06574 [hep-th].
  19. A. Buchel and L. Lehner, “Small black holes in A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Class. Quant. Grav. 32 no. 14, (2015) 145003, arXiv:1502.01574 [hep-th].
  20. O. J. C. Dias, J. E. Santos, and B. Way, “Localised A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Black Holes,” Phys. Rev. Lett. 117 no. 15, (2016) 151101, arXiv:1605.04911 [hep-th].
  21. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, arXiv:hep-th/9803131.
  22. I. R. Klebanov, D. Kutasov, and A. Murugan, “Entanglement as a probe of confinement,” Nucl. Phys. B 796 (2008) 274–293, arXiv:0709.2140 [hep-th].
  23. A. Buchel, “A Holographic perspective on Gubser-Mitra conjecture,” Nucl. Phys. B 731 (2005) 109–124, arXiv:hep-th/0507275.
  24. Y. Bea, J. Casalderrey-Solana, T. Giannakopoulos, A. Jansen, S. Krippendorf, D. Mateos, M. Sanchez-Garitaonandia, and M. Zilhão, “Spinodal Gravitational Waves,” arXiv:2112.15478 [hep-th].
  25. G. Nardini, M. Quiros, and A. Wulzer, “A Confining Strong First-Order Electroweak Phase Transition,” JHEP 09 (2007) 077, arXiv:0706.3388 [hep-ph].
  26. B. Hassanain, J. March-Russell, and M. Schvellinger, “Warped Deformed Throats have Faster (Electroweak) Phase Transitions,” JHEP 10 (2007) 089, arXiv:0708.2060 [hep-th].
  27. T. Konstandin, G. Nardini, and M. Quiros, “Gravitational Backreaction Effects on the Holographic Phase Transition,” Phys. Rev. D 82 (2010) 083513, arXiv:1007.1468 [hep-ph].
  28. T. Konstandin and G. Servant, “Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale,” JCAP 12 (2011) 009, arXiv:1104.4791 [hep-ph].
  29. B. von Harling and G. Servant, “QCD-induced Electroweak Phase Transition,” JHEP 01 (2018) 159, arXiv:1711.11554 [hep-ph].
  30. B. M. Dillon, B. K. El-Menoufi, S. J. Huber, and J. P. Manuel, “Rapid holographic phase transition with brane-localized curvature,” Phys. Rev. D 98 no. 8, (2018) 086005, arXiv:1708.02953 [hep-th].
  31. S. Bruggisser, B. Von Harling, O. Matsedonskyi, and G. Servant, “Electroweak Phase Transition and Baryogenesis in Composite Higgs Models,” JHEP 12 (2018) 099, arXiv:1804.07314 [hep-ph].
  32. P. Baratella, A. Pomarol, and F. Rompineve, “The Supercooled Universe,” JHEP 03 (2019) 100, arXiv:1812.06996 [hep-ph].
  33. E. Megías, G. Nardini, and M. Quirós, “Cosmological Phase Transitions in Warped Space: Gravitational Waves and Collider Signatures,” JHEP 09 (2018) 095, arXiv:1806.04877 [hep-ph].
  34. A. Pomarol, O. Pujolas, and L. Salas, “Holographic conformal transition and light scalars,” JHEP 10 (2019) 202, arXiv:1905.02653 [hep-th].
  35. K. Agashe, P. Du, M. Ekhterachian, S. Kumar, and R. Sundrum, “Cosmological Phase Transition of Spontaneous Confinement,” JHEP 05 (2020) 086, arXiv:1910.06238 [hep-ph].
  36. K. Fujikura, Y. Nakai, and M. Yamada, “A more attractive scheme for radion stabilization and supercooled phase transition,” JHEP 02 (2020) 111, arXiv:1910.07546 [hep-ph].
  37. E. Megias, G. Nardini, and M. Quiros, “Gravitational Imprints from Heavy Kaluza-Klein Resonances,” Phys. Rev. D 102 no. 5, (2020) 055004, arXiv:2005.04127 [hep-ph].
  38. F. Bigazzi, A. Caddeo, A. L. Cotrone, and A. Paredes, “Fate of false vacua in holographic first-order phase transitions,” JHEP 12 (2020) 200, arXiv:2008.02579 [hep-th].
  39. K. Agashe, P. Du, M. Ekhterachian, S. Kumar, and R. Sundrum, “Phase Transitions from the Fifth Dimension,” JHEP 02 (2021) 051, arXiv:2010.04083 [hep-th].
  40. P. Agrawal and M. Nee, “Avoided deconfinement in Randall-Sundrum models,” JHEP 10 (2021) 105, arXiv:2103.05646 [hep-ph].
  41. C. Csáki, M. Geller, Z. Heller-Algazi, and A. Ismail, “Relevant Dilaton Stabilization,” arXiv:2301.10247 [hep-ph].
  42. S. Girmohanta, S. J. Lee, Y. Nakai, and M. Suzuki, “Multi-brane cosmology,” arXiv:2304.05586 [hep-ph].
  43. C. Eröncel, J. Hubisz, S. J. Lee, G. Rigo, and B. Sambasivam, “New Horizons in the Holographic Conformal Phase Transition,” arXiv:2305.03773 [hep-ph].
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube