Phase Transition to RS: Cool, not Supercool (2401.09633v1)
Abstract: Motivated by the warped conifold compactification, we model the infrared (IR) dynamics of confining gauge theories in a Randall-Sundrum (RS)-like setup by modifying the stabilizing Goldberger-Wise (GW) potential so that it becomes large (in magnitude) in the IR and back-reacts on the geometry. We study the high-temperature phase by considering a black brane background in which we calculate the entropy and free energy of the strongly back-reacted solution. As with Buchel's result for the conifold (arXiv:2103.15188), we find a minimum temperature beyond which the black brane phase is thermodynamically unstable. In the context of a phase transition to the confining background, our results suggest that the amount of supercooling that the metastable black brane phase undergoes can be limited. It also suggests the first-order phase transition (and the associated gravitational waves from bubble collision) is not universal. Our results therefore have important phenomenological implications for early universe model building in these scenarios.
- A. Buchel, “A bestiary of black holes on the conifold with fluxes,” JHEP 06 (2021) 102, arXiv:2103.15188 [hep-th].
- P. Creminelli, A. Nicolis, and R. Rattazzi, “Holography and the electroweak phase transition,” JHEP 03 (2002) 051, arXiv:hep-th/0107141.
- A. Buchel, “The quest for a conifold conformal order,” JHEP 08 (2022) 080, arXiv:2205.00612 [hep-th].
- H. A. Chamblin and H. S. Reall, “Dynamic dilatonic domain walls,” Nucl. Phys. B 562 (1999) 133–157, arXiv:hep-th/9903225.
- S. S. Gubser and A. Nellore, “Mimicking the QCD equation of state with a dual black hole,” Phys. Rev. D 78 (2008) 086007, arXiv:0804.0434 [hep-th].
- Z. Chacko, R. K. Mishra, and D. Stolarski, “Dynamics of a Stabilized Radion and Duality,” JHEP 09 (2013) 121, arXiv:1304.1795 [hep-ph].
- R. K. Mishra and L. Randall, “Consequences of a Stabilizing Field’s Self-Interactions for RS Cosmology,” arXiv:2309.10090 [hep-ph].
- S. S. Gubser, “Curvature singularities: The Good, the bad, and the naked,” Adv. Theor. Math. Phys. 4 (2000) 679–745, arXiv:hep-th/0002160.
- R. Zöllner and B. Kämpfer, “Phase structures emerging from holography with Einstein gravity – dilaton models at finite temperature,” Eur. Phys. J. Plus 135 no. 3, (2020) 304, arXiv:1807.04260 [hep-th].
- D. Bunk, J. Hubisz, and B. Jain, “A Perturbative RS I Cosmological Phase Transition,” Eur. Phys. J. C 78 no. 1, (2018) 78, arXiv:1705.00001 [hep-ph].
- I. R. Klebanov and M. J. Strassler, “Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities,” JHEP 08 (2000) 052, arXiv:hep-th/0007191.
- D. Elander, A. F. Faedo, D. Mateos, and J. G. Subils, “Phase transitions in a three-dimensional analogue of Klebanov-Strassler,” JHEP 06 (2020) 131, arXiv:2002.08279 [hep-th].
- S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space,” Commun. Math. Phys. 87 (1983) 577.
- L. G. Yaffe, “Large N𝑁Nitalic_N phase transitions and the fate of small Schwarzschild-AdS black holes,” Phys. Rev. D 97 no. 2, (2018) 026010, arXiv:1710.06455 [hep-th].
- A. W. Peet and S. F. Ross, “Microcanonical phases of string theory on AdS(m) x S**n,” JHEP 12 (1998) 020, arXiv:hep-th/9810200.
- T. Banks, M. R. Douglas, G. T. Horowitz, and E. J. Martinec, “AdS dynamics from conformal field theory,” arXiv:hep-th/9808016.
- V. E. Hubeny and M. Rangamani, “Unstable horizons,” JHEP 05 (2002) 027, arXiv:hep-th/0202189.
- O. J. C. Dias, J. E. Santos, and B. Way, “Lumpy AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT black holes and black belts,” JHEP 04 (2015) 060, arXiv:1501.06574 [hep-th].
- A. Buchel and L. Lehner, “Small black holes in AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Class. Quant. Grav. 32 no. 14, (2015) 145003, arXiv:1502.01574 [hep-th].
- O. J. C. Dias, J. E. Santos, and B. Way, “Localised AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Black Holes,” Phys. Rev. Lett. 117 no. 15, (2016) 151101, arXiv:1605.04911 [hep-th].
- E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, arXiv:hep-th/9803131.
- I. R. Klebanov, D. Kutasov, and A. Murugan, “Entanglement as a probe of confinement,” Nucl. Phys. B 796 (2008) 274–293, arXiv:0709.2140 [hep-th].
- A. Buchel, “A Holographic perspective on Gubser-Mitra conjecture,” Nucl. Phys. B 731 (2005) 109–124, arXiv:hep-th/0507275.
- Y. Bea, J. Casalderrey-Solana, T. Giannakopoulos, A. Jansen, S. Krippendorf, D. Mateos, M. Sanchez-Garitaonandia, and M. Zilhão, “Spinodal Gravitational Waves,” arXiv:2112.15478 [hep-th].
- G. Nardini, M. Quiros, and A. Wulzer, “A Confining Strong First-Order Electroweak Phase Transition,” JHEP 09 (2007) 077, arXiv:0706.3388 [hep-ph].
- B. Hassanain, J. March-Russell, and M. Schvellinger, “Warped Deformed Throats have Faster (Electroweak) Phase Transitions,” JHEP 10 (2007) 089, arXiv:0708.2060 [hep-th].
- T. Konstandin, G. Nardini, and M. Quiros, “Gravitational Backreaction Effects on the Holographic Phase Transition,” Phys. Rev. D 82 (2010) 083513, arXiv:1007.1468 [hep-ph].
- T. Konstandin and G. Servant, “Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale,” JCAP 12 (2011) 009, arXiv:1104.4791 [hep-ph].
- B. von Harling and G. Servant, “QCD-induced Electroweak Phase Transition,” JHEP 01 (2018) 159, arXiv:1711.11554 [hep-ph].
- B. M. Dillon, B. K. El-Menoufi, S. J. Huber, and J. P. Manuel, “Rapid holographic phase transition with brane-localized curvature,” Phys. Rev. D 98 no. 8, (2018) 086005, arXiv:1708.02953 [hep-th].
- S. Bruggisser, B. Von Harling, O. Matsedonskyi, and G. Servant, “Electroweak Phase Transition and Baryogenesis in Composite Higgs Models,” JHEP 12 (2018) 099, arXiv:1804.07314 [hep-ph].
- P. Baratella, A. Pomarol, and F. Rompineve, “The Supercooled Universe,” JHEP 03 (2019) 100, arXiv:1812.06996 [hep-ph].
- E. Megías, G. Nardini, and M. Quirós, “Cosmological Phase Transitions in Warped Space: Gravitational Waves and Collider Signatures,” JHEP 09 (2018) 095, arXiv:1806.04877 [hep-ph].
- A. Pomarol, O. Pujolas, and L. Salas, “Holographic conformal transition and light scalars,” JHEP 10 (2019) 202, arXiv:1905.02653 [hep-th].
- K. Agashe, P. Du, M. Ekhterachian, S. Kumar, and R. Sundrum, “Cosmological Phase Transition of Spontaneous Confinement,” JHEP 05 (2020) 086, arXiv:1910.06238 [hep-ph].
- K. Fujikura, Y. Nakai, and M. Yamada, “A more attractive scheme for radion stabilization and supercooled phase transition,” JHEP 02 (2020) 111, arXiv:1910.07546 [hep-ph].
- E. Megias, G. Nardini, and M. Quiros, “Gravitational Imprints from Heavy Kaluza-Klein Resonances,” Phys. Rev. D 102 no. 5, (2020) 055004, arXiv:2005.04127 [hep-ph].
- F. Bigazzi, A. Caddeo, A. L. Cotrone, and A. Paredes, “Fate of false vacua in holographic first-order phase transitions,” JHEP 12 (2020) 200, arXiv:2008.02579 [hep-th].
- K. Agashe, P. Du, M. Ekhterachian, S. Kumar, and R. Sundrum, “Phase Transitions from the Fifth Dimension,” JHEP 02 (2021) 051, arXiv:2010.04083 [hep-th].
- P. Agrawal and M. Nee, “Avoided deconfinement in Randall-Sundrum models,” JHEP 10 (2021) 105, arXiv:2103.05646 [hep-ph].
- C. Csáki, M. Geller, Z. Heller-Algazi, and A. Ismail, “Relevant Dilaton Stabilization,” arXiv:2301.10247 [hep-ph].
- S. Girmohanta, S. J. Lee, Y. Nakai, and M. Suzuki, “Multi-brane cosmology,” arXiv:2304.05586 [hep-ph].
- C. Eröncel, J. Hubisz, S. J. Lee, G. Rigo, and B. Sambasivam, “New Horizons in the Holographic Conformal Phase Transition,” arXiv:2305.03773 [hep-ph].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.