Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Training of Generalizable Visuomotor Policies via Control-Aware Augmentation

Published 17 Jan 2024 in cs.RO and cs.CV | (2401.09258v2)

Abstract: Improving generalization is one key challenge in embodied AI, where obtaining large-scale datasets across diverse scenarios is costly. Traditional weak augmentations, such as cropping and flipping, are insufficient for improving a model's performance in new environments. Existing data augmentation methods often disrupt task-relevant information in images, potentially degrading performance. To overcome these challenges, we introduce EAGLE, an efficient training framework for generalizable visuomotor policies that improves upon existing methods by (1) enhancing generalization by applying augmentation only to control-related regions identified through a self-supervised control-aware mask and (2) improving training stability and efficiency by distilling knowledge from an expert to a visuomotor student policy, which is then deployed to unseen environments without further fine-tuning. Comprehensive experiments on three domains, including the DMControl Generalization Benchmark, the enhanced Robot Manipulation Distraction Benchmark, and a long-sequential drawer-opening task, validate the effectiveness of our method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.