Bang-bang preparation of quantum many-body ground states in two dimensions: optimization of the algorithm with a two-dimensional tensor network (2401.09158v4)
Abstract: A bang-bang (BB) algorithm prepares the ground state of a two-dimensional (2D) quantum many-body Hamiltonian $H=H_1+H_2$ by evolving an initial product state alternating between $H_1$ and $H_2$. We use the neighborhood tensor update to simulate the BB evolution with an infinite pair-entangled projected state (iPEPS). The alternating sequence is optimized with the final energy as a cost function. The energy is calculated with the tangent space methods for the sake of their stability. The method is benchmarked in the 2D transverse field quantum Ising model near its quantum critical point against a ground state obtained by variational optimization of the iPEPS. The optimal BB sequence differs non-perturbatively from a sequence simulating quantum annealing or adiabatic preparation (AP) of the ground state. The optimal BB energy converges with the number of bangs much faster than the optimal AP energy.
- J. Preskill, Quantum 2, 79 (2018).
- F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066 (2004).
- R. Orús and G. Vidal, Phys. Rev. B 80, 094403 (2009).
- P. Corboz, Phys. Rev. B 94, 035133 (2016a).
- P. Corboz, Phys. Rev. B 93, 045116 (2016b).
- M. Rader and A. M. Läuchli, Phys. Rev. X 8, 031030 (2018).
- E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” (2014), arXiv:1411.4028 [quant-ph] .
- M. P. Zaletel and F. Pollmann, Phys. Rev. Lett. 124, 037201 (2020).
- J. Dziarmaga, Phys. Rev. B 104, 094411 (2021).
- R. Orús, Ann. Phys. (Amsterdam) 349, 117 (2014).
- P. C. G. Vlaar and P. Corboz, Phys. Rev. B 103, 205137 (2021).
- G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
- G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
- G. Evenbly and G. Vidal, Phys. Rev. Lett. 112, 220502 (2014a).
- G. Evenbly and G. Vidal, Phys. Rev. B 89, 235113 (2014b).
- C. Hubig and J. I. Cirac, SciPost Phys. 6, 31 (2019).
- A. Abendschein and S. Capponi, Phys. Rev. Lett. 101, 227201 (2008).
- J. Dziarmaga, Phys. Rev. B 105, 054203 (2022a).
- R. Kaneko and I. Danshita, Communications Physics 5, 65 (2022).
- R. Kaneko and I. Danshita, “Dynamics of correlation spreading in low-dimensional transverse-field ising models,” (2023).
- J. Dziarmaga and J. M. Mazur, Phys. Rev. B 107, 144510 (2023).
- H. F. Trotter, Proc. Amer. Math. Soc. 10, 545 (1959).
- M. Suzuki, J. Phys. Soc. Jpn. 21, 2274 (1966).
- M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
- J. Dziarmaga, Phys. Rev. B 106, 014304 (2022b).
- P. Corboz, Phys. Rev. B 94, 035133 (2016c).
- H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).
- A. del Campo and K. Kim, New J. Phys. 21, 050201 (2019).
- J. Wurtz and P. J. Love, Quantum 6, 635 (2022).
- R. Hooke and T. A. Jeeves, Journal of the ACM 8, 212 (1961).
- T. M. Inc., “Matlab version: 9.14.0.2286388 (r2023a) update 3,” (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.