Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Pseudo Twirling Mitigation of Coherent Errors in non-Clifford Gates (2401.09040v2)

Published 17 Jan 2024 in quant-ph

Abstract: The conventional circuit paradigm, utilizing a limited number of gates to construct arbitrary quantum circuits, is hindered by significant noise overhead. For instance, the standard gate paradigm employs two CNOT gates for the partial CPhase rotation in the quantum Fourier transform, even when the rotation angle is very small. In contrast, some quantum computer platforms can directly implement such operations using their native interaction, resulting in considerably shorter and less noisy implementations for small rotation angles. Unfortunately, coherent errors stemming from qubit crosstalk and calibration imperfections render these implementations impractical. In Clifford gates such as the CNOT, these errors can be addressed through Pauli twirling (also known as randomized compiling). However, this technique is not applicable to the non-Clifford native implementations described above. The present work introduces, analyzes, and experimentally demonstrates a technique called Pseudo Twirling' to address coherent errors in general gates and circuits. Additionally, we experimentally showcase that integrating pseudo twirling with a quantum error mitigation method calledAdaptive KIK' enables the simultaneous mitigation of both noise and coherent errors in non-Clifford gates. Due to its unique features pseudo twirling could become a valuable asset in enhancing the capabilities of both present and future NISQ devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. S. Endo, S. C. Benjamin, and Y. Li, Physical Review X 8, 031027 (2018).
  2. K. Temme, S. Bravyi, and J. M. Gambetta, Physical review letters 119, 180509 (2017).
  3. B. Koczor, Physical Review X 11, 031057 (2021).
  4. Y. Li and S. C. Benjamin, Physical Review X 7, 021050 (2017).
  5. J. J. Wallman and J. Emerson, Physical Review A 94, 052325 (2016).
  6. R. Harper, S. T. Flammia, and J. J. Wallman, Nature Physics 16, 1184 (2020).
  7. E. Knill, arXiv preprint quant-ph/0404104  (2004).
  8. I. Henao, J. P. Santos, and R. Uzdin, npj Quantum Information 9, 120 (2023).
  9. M. A. Nielsen and I. Chuang, Quantum computation and quantum information (American Association of Physics Teachers, 2002).
  10. M. Malekakhlagh, E. Magesan, and D. C. McKay, Physical Review A 102, 042605 (2020).
  11. S. Suzuki, J.-i. Inoue, and B. K. Chakrabarti, Quantum Ising phases and transitions in transverse Ising models, Vol. 862 (Springer, 2012).
  12. J. A. Gyamfi, European Journal of Physics 41, 063002 (2020).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.