Papers
Topics
Authors
Recent
2000 character limit reached

Improved Pothole Detection Using YOLOv7 and ESRGAN

Published 10 Nov 2023 in cs.CV | (2401.08588v1)

Abstract: Potholes are common road hazards that is causing damage to vehicles and posing a safety risk to drivers. The introduction of Convolutional Neural Networks (CNNs) is widely used in the industry for object detection based on Deep Learning methods and has achieved significant progress in hardware improvement and software implementations. In this paper, a unique better algorithm is proposed to warrant the use of low-resolution cameras or low-resolution images and video feed for automatic pothole detection using Super Resolution (SR) through Super Resolution Generative Adversarial Networks (SRGANs). Then we have proceeded to establish a baseline pothole detection performance on low quality and high quality dashcam images using a You Only Look Once (YOLO) network, namely the YOLOv7 network. We then have illustrated and examined the speed and accuracy gained above the benchmark after having upscaling implementation on the low quality images.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.