Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Chiral spin liquid and quantum phase diagram of spin-$1/2$ $J_1$-$J_2$-$J_χ$ model on the square lattice (2401.07461v2)

Published 15 Jan 2024 in cond-mat.str-el

Abstract: We study the spin-$1/2$ Heisenberg model on the square lattice with the first and second nearest-neighbor antiferromagnetic couplings $J_1$, $J_2$, as well as the three-spin scalar chiral coupling $J_{\chi}$. Using density matrix renormalization group calculations, we obtain a quantum phase diagram of this system for $0 \leq J_2/J_1 \leq 1.0$ and $0 \leq J_{\chi}/J_1 \leq 1.5$. We identify the N\'eel and stripe magnetic order phase at small $J_{\chi}$ coupling. With growing $J_{\chi}$, we identify the emergent chiral spin liquid (CSL) phase characterized by the quantized spin Chern number $C = 1/2$ and entanglement spectrum with the quasidegenerate group of levels agreeing with chiral SU(2)$1$ conformal field theory, which is an analog of the $\nu = 1/2$ Laughlin state in spin system. In the vicinity of the N\'eel and CSL phase boundary, our numerical results do not find evidence to support the phase coexistence of N\'eel order and topological order that was conjectured by mean-field calculations. In the larger $J_2$ and $J{\chi}$ coupling regime, the entanglement spectrum of the ground state also exhibits the chiral quasidegeneracy consistent with a CSL, but the adiabatic flux insertion simulations fail to obtain the quantized Chern number. By analyzing the finite-size scaling of magnetic order parameter, we find the vanished magnetic order suggesting a magnetic disorder phase, whose nature needs further studies. Different from the spin-$1$ $J_1$-$J_2$-$J_\chi$ model, we do not find the coexistent stripe magnetic order and topological order. We also investigate the $J_{\chi}$ dominant regime and find a strong tendency of the system to develop a dimer order rather than the chiral spin magnetic order observed in the spin-$1$ model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. Lucile Savary and Leon Balents, “Quantum spin liquids: a review,” Reports on Progress in Physics 80, 016502 (2016).
  2. Yi Zhou, Kazushi Kanoda,  and Tai-Kai Ng, “Quantum spin liquid states,” Rev. Mod. Phys. 89, 025003 (2017).
  3. C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman,  and T. Senthil, “Quantum spin liquids,” Science 367 (2020), 10.1126/science.aay0668.
  4. T. Lancaster, “Quantum spin liquids,”  (2023), arXiv:2310.19577 [cond-mat.str-el] .
  5. Steven Kivelson and Shivaji Sondhi, “50 years of quantum spin liquids,” Nature Reviews Physics 5, 368–369 (2023).
  6. X.-G. Wen, “Topological orders in rigid states,” Int. J. Mod. Phys. B 4, 239 (1990).
  7. X. G. Wen, “Mean-field theory of spin-liquid states with finite energy gap and topological orders,” Phys. Rev. B 44, 2664 (1991).
  8. T. Senthil and M. P. A. Fisher, “Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory of electron fractionalization in strongly correlated systems,” Phys. Rev. B 62, 7850 (2000).
  9. T. Senthil and M. P. A. Fisher, “Fractionalization in the cuprates: Detecting the topological order,” Phys. Rev. Lett. 86, 292 (2001).
  10. V. Kalmeyer and R. B. Laughlin, “Equivalence of the resonating-valence-bond and fractional quantum hall states,” Phys. Rev. Lett. 59, 2095–2098 (1987).
  11. X. G. Wen, Frank Wilczek,  and A. Zee, “Chiral spin states and superconductivity,” Phys. Rev. B 39, 11413–11423 (1989).
  12. G. Baskaran, “Novel local symmetries and chiral-symmetry-broken phases in s=1/2 triangular-lattice heisenberg model,” Phys. Rev. Lett. 63, 2524–2527 (1989).
  13. Kun Yang, L. K. Warman,  and S. M. Girvin, “Possible spin-liquid states on the triangular and kagomé lattices,” Phys. Rev. Lett. 70, 2641–2644 (1993).
  14. F. D. M. Haldane and Daniel P. Arovas, “Quantized spin currents in two-dimensional chiral magnets,” Phys. Rev. B 52, 4223–4225 (1995).
  15. Frank Wilczek, Fractional statistics and anyon superconductivity, Vol. 5 (World scientific, 1990).
  16. Yin-Chen He, D. N. Sheng,  and Yan Chen, “Chiral spin liquid in a frustrated anisotropic kagome heisenberg model,” Phys. Rev. Lett. 112, 137202 (2014).
  17. Shou-Shu Gong, Wei Zhu,  and D. N. Sheng, “Emergent chiral spin liquid: Fractional quantum hall effect in a kagome heisenberg model,” Scientific Reports 4 (2014a), 10.1038/srep06317.
  18. Alexander Wietek, Antoine Sterdyniak,  and Andreas M. Läuchli, “Nature of chiral spin liquids on the kagome lattice,” Phys. Rev. B 92, 125122 (2015).
  19. Wen-Jun Hu, Wei Zhu, Yi Zhang, Shoushu Gong, Federico Becca,  and D. N. Sheng, “Variational monte carlo study of a chiral spin liquid in the extended heisenberg model on the kagome lattice,” Phys. Rev. B 91, 041124 (2015).
  20. Shou-Shu Gong, Wei Zhu, Leon Balents,  and D. N. Sheng, “Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice,” Phys. Rev. B 91, 075112 (2015).
  21. Ciarán Hickey, Lukasz Cincio, Zlatko Papić,  and Arun Paramekanti, “Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders,” Phys. Rev. B 96, 115115 (2017).
  22. Shou-Shu Gong, W. Zhu, J.-X. Zhu, D. N. Sheng,  and Kun Yang, “Global phase diagram and quantum spin liquids in a spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG triangular antiferromagnet,” Phys. Rev. B 96, 075116 (2017).
  23. Alexander Wietek and Andreas M. Läuchli, “Chiral spin liquid and quantum criticality in extended s=12𝑠12s=\frac{1}{2}italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG heisenberg models on the triangular lattice,” Phys. Rev. B 95, 035141 (2017).
  24. Anne E. B. Nielsen, Germán Sierra,  and J. Ignacio Cirac, “Local models of fractional quantum hall states in lattices and physical implementation,” Nature Communications 4, 2864 (2013).
  25. Ji-Yao Chen, Jheng-Wei Li, Pierre Nataf, Sylvain Capponi, Matthieu Mambrini, Keisuke Totsuka, Hong-Hao Tu, Andreas Weichselbaum, Jan von Delft,  and Didier Poilblanc, “Abelian SU⁢(N)1SUsubscriptN1{{\mathrm{SU(N)}_{1}}}roman_SU ( roman_N ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT chiral spin liquids on the square lattice,” Phys. Rev. B 104, 235104 (2021).
  26. Aaron Szasz, Johannes Motruk, Michael P. Zaletel,  and Joel E. Moore, “Chiral spin liquid phase of the triangular lattice hubbard model: A density matrix renormalization group study,” Phys. Rev. X 10, 021042 (2020).
  27. Aaron Szasz and Johannes Motruk, “Phase diagram of the anisotropic triangular lattice hubbard model,” Phys. Rev. B 103, 235132 (2021).
  28. Tessa Cookmeyer, Johannes Motruk,  and Joel E. Moore, “Four-spin terms and the origin of the chiral spin liquid in mott insulators on the triangular lattice,” Phys. Rev. Lett. 127, 087201 (2021).
  29. Bin-Bin Chen, Ziyu Chen, Shou-Shu Gong, D. N. Sheng, Wei Li,  and Andreas Weichselbaum, “Quantum spin liquid with emergent chiral order in the triangular-lattice hubbard model,” Phys. Rev. B 106, 094420 (2022).
  30. Yi-Fan Jiang and Hong-Chen Jiang, ‘‘Topological superconductivity in the doped chiral spin liquid on the triangular lattice,” Phys. Rev. Lett. 125, 157002 (2020).
  31. Yixuan Huang and D. N. Sheng, “Topological chiral and nematic superconductivity by doping mott insulators on triangular lattice,” Phys. Rev. X 12, 031009 (2022).
  32. Yixuan Huang, Shou-Shu Gong,  and D. N. Sheng, “Quantum phase diagram and spontaneously emergent topological chiral superconductivity in doped triangular-lattice mott insulators,” Phys. Rev. Lett. 130, 136003 (2023).
  33. G Grissonnanche, S Thériault, A Gourgout, M-E Boulanger, E Lefrançois, A Ataei, F Laliberté, M Dion, J-S Zhou, S Pyon, et al., “Chiral phonons in the pseudogap phase of cuprates,” Nature Physics 16, 1108–1111 (2020).
  34. Marie-Eve Boulanger, Gaël Grissonnanche, Sven Badoux, Andréanne Allaire, Étienne Lefrançois, Anaëlle Legros, Adrien Gourgout, Maxime Dion, CH Wang, XH Chen, et al., “Thermal hall conductivity in the cuprate mott insulators Nd2⁢CuO4subscriptNd2subscriptCuO4\mathrm{Nd_{2}CuO_{4}}roman_Nd start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CuO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and Sr2⁢CuO2⁢Cl2subscriptSr2subscriptCuO2subscriptCl2\mathrm{Sr_{2}CuO_{2}Cl_{2}}roman_Sr start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CuO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Cl start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Nature communications 11, 5325 (2020).
  35. Marie-Eve Boulanger, Gaël Grissonnanche, Étienne Lefrançois, Adrien Gourgout, Ke-Jun Xu, Zhi-Xun Shen, Richard L. Greene,  and Louis Taillefer, “Thermal hall conductivity of electron-doped cuprates,” Phys. Rev. B 105, 115101 (2022).
  36. Marie-Eve Boulanger, Lu Chen, Vincent Oliviero, David Vignolles, Gaël Grissonnanche, Kejun Xu, Zhi-Xun Shen, Cyril Proust, Jordan Baglo,  and Louis Taillefer, “Thermal hall conductivity of electron-doped cuprates: Electrons and phonons,”  (2023), arXiv:2310.15892 [cond-mat.str-el] .
  37. Rhine Samajdar, Mathias S Scheurer, Shubhayu Chatterjee, Haoyu Guo, Cenke Xu,  and Subir Sachdev, “Enhanced thermal hall effect in the square-lattice néel state,” Nature Physics 15, 1290–1294 (2019a).
  38. Rhine Samajdar, Shubhayu Chatterjee, Subir Sachdev,  and Mathias S. Scheurer, “Thermal hall effect in square-lattice spin liquids: A schwinger boson mean-field study,” Phys. Rev. B 99, 165126 (2019b).
  39. Jung Hoon Han, Jin-Hong Park,  and Patrick A. Lee, “Consideration of thermal hall effect in undoped cuprates,” Phys. Rev. B 99, 205157 (2019).
  40. Zi-Xiang Li and Dung-Hai Lee, “The thermal hall conductance of two doped symmetry-breaking topological insulators,”  (2019), arXiv:1905.04248 [cond-mat.str-el] .
  41. Tao Li, “Theory of the giant thermal hall effect in the high temperature superconductors,”  (2019), arXiv:1906.01712 [cond-mat.str-el] .
  42. Yunchao Zhang, Yanting Teng, Rhine Samajdar, Subir Sachdev,  and Mathias S. Scheurer, “Phonon hall viscosity from phonon-spinon interactions,” Phys. Rev. B 104, 035103 (2021).
  43. Jaime Merino and Arnaud Ralko, “Majorana chiral spin liquid in a model for mott insulating cuprates,” Phys. Rev. Res. 4, 023122 (2022).
  44. Chandra M. Varma, “Thermal hall effect in the pseudogap phase of cuprates,” Phys. Rev. B 102, 075113 (2020).
  45. Haoyu Guo and Subir Sachdev, “Extrinsic phonon thermal hall transport from hall viscosity,” Phys. Rev. B 103, 205115 (2021).
  46. Mengxing Ye, Lucile Savary,  and Leon Balents, “Phonon hall viscosity in magnetic insulators,”  (2021), arXiv:2103.04223 [cond-mat.str-el] .
  47. Léo Mangeolle, Leon Balents,  and Lucile Savary, “Phonon thermal hall conductivity from scattering with collective fluctuations,” Phys. Rev. X 12, 041031 (2022a).
  48. Léo Mangeolle, Leon Balents,  and Lucile Savary, “Thermal conductivity and theory of inelastic scattering of phonons by collective fluctuations,” Phys. Rev. B 106, 245139 (2022b).
  49. B. Flebus and A. H. MacDonald, “Charged defects and phonon hall effects in ionic crystals,” Phys. Rev. B 105, L220301 (2022).
  50. Xiao-Qi Sun, Jing-Yuan Chen,  and Steven A. Kivelson, “Large extrinsic phonon thermal hall effect from resonant scattering,” Phys. Rev. B 106, 144111 (2022).
  51. Yixuan Huang, W. Zhu, Shou-Shu Gong, Hong-Chen Jiang,  and D. N. Sheng, “Coexistence of non-abelian chiral spin liquid and magnetic order in a spin-1 antiferromagnet,” Phys. Rev. B 105, 155104 (2022).
  52. David A Rabson and Stuart A Trugman, ‘‘A spin model for investigating chirality,” Journal of Physics: Condensed Matter 7, 9005 (1995).
  53. Steven R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett. 69, 2863–2866 (1992).
  54. I. P McCulloch and M Gulácsi, “The non-abelian density matrix renormalization group algorithm,” Europhysics Letters (EPL) 57, 852–858 (2002).
  55. Johannes Hauschild and Frank Pollmann, “Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy),” SciPost Phys. Lect. Notes , 5 (2018), code available from https://github.com/tenpy/tenpy, arXiv:1805.00055 .
  56. Simeng Yan, David A Huse,  and Steven R White, “Spin-liquid ground state of the s= 1/2 kagome heisenberg antiferromagnet,” Science 332, 1173–1176 (2011).
  57. Hong-Chen Jiang, Zhenghan Wang,  and Leon Balents, “Identifying topological order by entanglement entropy,” Nature Physics 8, 902–905 (2012).
  58. J. Eisert, M. Cramer,  and M. B. Plenio, “Colloquium: Area laws for the entanglement entropy,” Reviews of Modern Physics 82, 277–306 (2010).
  59. Alexei Kitaev and John Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96, 110404 (2006).
  60. Michael Levin and Xiao-Gang Wen, “Detecting topological order in a ground state wave function,” Phys. Rev. Lett. 96, 110405 (2006).
  61. Hui Li and F. D. M. Haldane, “Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states,” Phys. Rev. Lett. 101, 010504 (2008).
  62. Xiao-Liang Qi, Hosho Katsura,  and Andreas W. W. Ludwig, “General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states,” Phys. Rev. Lett. 108, 196402 (2012).
  63. L. Cincio and G. Vidal, “Characterizing topological order by studying the ground states on an infinite cylinder,” Phys. Rev. Lett. 110, 067208 (2013).
  64. Michael P. Zaletel, Roger S. K. Mong,  and Frank Pollmann, “Topological characterization of fractional quantum hall ground states from microscopic hamiltonians,” Phys. Rev. Lett. 110, 236801 (2013).
  65. Yasuhiro Hatsugai, “Chern number and edge states in the integer quantum hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993).
  66. Wen-Yuan Liu, Shou-Shu Gong, Yu-Bin Li, Didier Poilblanc, Wei-Qiang Chen,  and Zheng-Cheng Gu, “Gapless quantum spin liquid and global phase diagram of the spin-1/2 J1−J2subscript𝐽1subscript𝐽2J_{1}-J_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square antiferromagnetic heisenberg model,” Science Bulletin 67, 1034–1041 (2022).
  67. Anders W. Sandvik, “Finite-size scaling and boundary effects in two-dimensional valence-bond solids,” Phys. Rev. B 85, 134407 (2012).
  68. Shou-Shu Gong, Wei Zhu, D. N. Sheng, Olexei I. Motrunich,  and Matthew P. A. Fisher, “Plaquette ordered phase and quantum phase diagram in the spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG J1−J2subscript𝐽1subscript𝐽2{J}_{1}\text{$-$}{J}_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square heisenberg model,” Phys. Rev. Lett. 113, 027201 (2014b).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube