Lagrangian Relations and Quantum $L_\infty$ Algebras (2401.06110v4)
Abstract: Quantum $L_\infty$ algebras are higher loop generalizations of cyclic $L_\infty$ algebras. Motivated by the problem of defining morphisms between such algebras, we construct a linear category of $(-1)$-shifted symplectic vector spaces and distributional half-densities, originally proposed by \v{S}evera. Morphisms in this category can be given both by formal half-densities and Lagrangian relations; we prove that the composition of such morphisms recovers the construction of homotopy transfer of quantum $L_\infty$ algebras. Finally, using this category, we propose a new notion of a relation between quantum $L_\infty$ algebras.
- C. Albert, B. Bleile and J. Fröhlich “Batalin-Vilkovisky integrals in finite dimensions” In Journal of Mathematical Physics 51.1, 2010, pp. 015213–015213 DOI: 10.1063/1.3278524
- “A categorical semantics of quantum protocols” In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., 2004, pp. 415–425 DOI: 10.1109/LICS.2004.1319636
- “Categorical Quantum Mechanics” In Handbook of Quantum Logic and Quantum Structures Elsevier, 2009, pp. 261–323 DOI: 10.1016/b978-0-444-52869-8.50010-4
- Carlo Albert “Batalin-Vilkovisky Gauge-Fixing via Homological Perturbation Theory” URL: http://www-math.unice.fr/~patras/CargeseConference/ACQFT09_CarloALBERT.pdf
- “The Geometry of the master equation and topological quantum field theory” In Int. J. Mod. Phys. A 12, 1997, pp. 1405–1429 DOI: 10.1142/S0217751X97001031
- S. Barannikov “Modular Operads and Batalin-Vilkovisky Geometry” In International Mathematics Research Notices Oxford University Press (OUP), 2010 DOI: 10.1093/imrn/rnm075
- Serguei Barannikov “Solving the Noncommutative Batalin–Vilkovisky Equation” In Letters in Mathematical Physics 103.6, 2013, pp. 605–628 DOI: 10.1007/s11005-013-0615-8
- Jean Bénabou “Introduction to bicategories” In Lecture Notes in Mathematics Springer Berlin Heidelberg, 1967, pp. 1–77 DOI: 10.1007/bfb0074299
- “Minimal models of quantum homotopy Lie algebras via the BV-formalism” In Journal of Mathematical Physics 59.6, 2018, pp. 063512 DOI: 10.1063/1.5022890
- “Gauge algebra and quantization” In Physics Letters B 102.1, 1981, pp. 27–31 DOI: 10.1016/0370-2693(81)90205-7
- Damien Calaque, Rune Haugseng and Claudia Scheimbauer “The AKSZ Construction in Derived Algebraic Geometry as an Extended Topological Field Theory”, 2021 arXiv:2108.02473 [math.CT]
- “A Graphical Calculus for Lagrangian Relations” In Electronic Proceedings in Theoretical Computer Science 372 Open Publishing Association, 2022, pp. 338–351 DOI: 10.4204/eptcs.372.24
- “Abstract Hodge Decomposition and Minimal Models for Cyclic Algebras” In Letters in Mathematical Physics 89.1, 2009, pp. 33–49 DOI: 10.1007/s11005-009-0314-7
- “Feynman diagrams and minimal models for operadic algebras” In Journal of the London Mathematical Society 81.2, 2010, pp. 317–337 DOI: 10.1112/jlms/jdp073
- Kevin J. Costello “Renormalisation and the Batalin-Vilkovisky formalism” In arXiv e-prints, 2007, pp. arXiv:0706.1533 arXiv:0706.1533 [math.QA]
- Kevin J. Costello “Renormalisation and the Batalin-Vilkovisky formalism”, 2007 arXiv:0706.1533 [math.QA]
- M. Crainic “On the perturbation lemma, and deformations” In arXiv Mathematics e-prints, 2004, pp. math/0403266 arXiv:math/0403266 [math.AT]
- Martin Doubek, Branislav Jurčo and Korbinian Münster “Modular operads and the quantum open-closed homotopy algebra” In Journal of High Energy Physics 2015.12 Springer ScienceBusiness Media LLC, 2015, pp. 1–55 DOI: 10.1007/jhep12(2015)158
- Martin Doubek, Branislav Jurčo and Ján Pulmann “Quantum L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT Algebras and the Homological Perturbation Lemma” In Communications in Mathematical Physics 367.1 Springer ScienceBusiness Media LLC, 2019, pp. 215–240 DOI: 10.1007/s00220-019-03375-x
- “How to derive Feynman diagrams for finite-dimensional integrals directly from the BV formalism” In arXiv e-prints, 2012, pp. arXiv:1202.1554 DOI: 10.48550/arXiv.1202.1554
- Victor W. Guillemin and Shlomo Sternberg “Semi-Classical Analysis”, 2013
- “Some Problems in Integral Geometry and Some Related Problems in Micro-Local Analysis” In American Journal of Mathematics 101.4 JSTOR, 1979, pp. 915 DOI: 10.2307/2373923
- Owen Gwilliam “Factorization algebras and free field theories”, 2013 URL: https://people.math.umass.edu/~gwilliam/thesis.pdf
- P.R. Halmos “Introduction to Hilbert Space and the Theory of Spectral Multiplicity”, Chelsea Scientific books Chelsea Publishing Company, 1957
- Rune Haugseng, Valerio Melani and Pavel Safronov “SHIFTED COISOTROPIC CORRESPONDENCES” In Journal of the Institute of Mathematics of Jussieu 21.3 Cambridge University Press (CUP), 2020, pp. 785–849 DOI: 10.1017/s1474748020000274
- “Quantization of Gauge Systems” Princeton University Press, 2020 DOI: 10.2307/j.ctv10crg0r
- Hovhannes M. Khudaverdian “Semidensities on Odd Symplectic Supermanifolds” In Communications in Mathematical Physics 247.2 Springer ScienceBusiness Media LLC, 2004, pp. 353–390 DOI: 10.1007/s00220-004-1083-x
- “Coherence for compact closed categories” In Journal of Pure and Applied Algebra 19, 1980, pp. 193–213 DOI: https://doi.org/10.1016/0022-4049(80)90101-2
- Hovhannes M. Khudaverdian and Theodore Th. Voronov “Differential forms and odd symplectic geometry” In American Mathematical Society Translations: Series 2 American Mathematical Society, 2008, pp. 159–171 DOI: 10.1090/trans2/224/08
- Saunders Mac Lane “An Algebra of Additive Relations” In Proceedings of the National Academy of Sciences of the United States of America 47.7 National Academy of Sciences, 1961, pp. 1043–1051 URL: http://www.jstor.org/stable/71127
- Yuri I Manin “Gauge field theory and complex geometry”, Grundlehren der mathematischen Wissenschaften Berlin, Germany: Springer, 2010
- Martin Markl “Loop Homotopy Algebras in Closed String Field Theory” In Communications in Mathematical Physics 221.2 Springer, 2001, pp. 367–384 DOI: 10.1007/PL00005575
- H. Mitsch “A natural partial order for semigroups” In Proceedings of the American Mathematical Society 97.3 American Mathematical Society (AMS), 1986, pp. 384–388 DOI: 10.1090/s0002-9939-1986-0840614-0
- Pavel Mnev “Discrete BF theory”, 2008 arXiv:0809.1160 [hep-th]
- “Introduction to Symplectic Topology” Oxford University Press, 2017 DOI: 10.1093/oso/9780198794899.001.0001
- Dmitry Roytenberg “Courant algebroids, derived brackets and even symplectic supermanifolds” In arXiv: Differential Geometry, 1999
- Albert Schwarz “Geometry of Batalin-Vilkovisky quantization” In Communications in Mathematical Physics 155.2, 1993, pp. 249–260 DOI: 10.1007/BF02097392
- Albert Schwarz “Semiclassical approximation in Batalin-Vilkovisky formalism” In Communications in Mathematical Physics 158.2 Springer ScienceBusiness Media LLC, 1993, pp. 373–396 DOI: 10.1007/bf02108080
- Peter Selinger “Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract)” Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005) In Electronic Notes in Theoretical Computer Science 170, 2007, pp. 139–163 DOI: https://doi.org/10.1016/j.entcs.2006.12.018
- Pavol Severa “Noncommutative Differential Forms and Quantization of the Odd Symplectic Category” In Letters in Mathematical Physics 68.1 Springer ScienceBusiness Media LLC, 2004, pp. 31–39 DOI: 10.1007/s11005-004-6053-x
- Pavol Ševera “On the Origin of the BV Operator on Odd Symplectic Supermanifolds” In Letters in Mathematical Physics 78.1 Springer ScienceBusiness Media LLC, 2006, pp. 55–59 DOI: 10.1007/s11005-006-0097-z
- Ondřej Skácel “Finite dimensional BV formalism”, 2017
- Theodore Th. Voronov ““Nonlinear pullbacks” of functions and infinity-morphisms for homotopy Poisson structures” In Journal of Geometry and Physics 111 Elsevier BV, 2017, pp. 94–110 DOI: 10.1016/j.geomphys.2016.10.004
- Alan Weinstein “Symplectic categories” In Portugaliae Mathematica 67.2, 2010, pp. 261–278
- Alan Weinstein “Lectures on Symplectic Manifolds” American Mathematical Society, 1977 DOI: 10.1090/cbms/029
- Alan Weinstein “Symplectic geometry” In Bulletin (New Series) of the American Mathematical Society 5.1 American Mathematical Society, 1981, pp. 1–13
- Alan Weinstein “Coisotropic calculus and Poisson groupoids” In Journal of the Mathematical Society of Japan 40.4 Mathematical Society of Japan, 1988, pp. 705–727 DOI: 10.2969/jmsj/04040705
- Charles A. Weibel “An Introduction to Homological Algebra”, Cambridge Studies in Advanced Mathematics Cambridge: Cambridge University Press, 1994 DOI: 10.1017/CBO9781139644136
- Barton Zwiebach “Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation” In Nuclear Physics B 390.1, 1993, pp. 33–152 DOI: 10.1016/0550-3213(93)90388-6
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.