Implications of comprehensive nuclear and astrophysics data on the equations of state of neutron star matter (2401.06018v4)
Abstract: The equations of state (EoSs) governing neutron star (NS) matter obtained for both non-relativistic and relativistic mean-field models are systematically confronted with a diverse set of terrestrial data and astrophysical observations within the Bayesian framework. The terrestrial data, spans from bulk properties of finite nuclei to the heavy-ion collisions, constrain the symmetric nuclear matter EoS and the symmetry energy up to twice the saturation density ($\rho_0$= 0.16 fm${-3}$). The astrophysical observations encompass the NS radius, the tidal deformability, and the lower bound on maximum mass. Three distinct posterior distributions of EoSs are generated by gradually updating the priors with different constraints: (i) only the maximum NS mass, (ii) incorporating additional terrestrial data, (iii) combining both the terrestrial data and astrophysical observations. These EoS distributions are then compared using the Kullback-Liebler divergence which highlights the significant constraints imposed on the EoSs by the currently available lower bound of NS maximum mass and terrestrial data. The remaining astrophysical observations marginally refine the EoS within the density range $\sim$ 2-3$\rho_0$. It is observed that the relativistic mean field model yields stiffer EoS around the saturation density, but predict smaller values of the speed of sound and proton fraction in the interior of massive stars.
- J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).
- J. Lattimer, Annual Review of Nuclear and Particle Science 71, 433 (2021), https://doi.org/10.1146/annurev-nucl-102419-124827 .
- M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012), arXiv:1204.0466 [nucl-ex] .
- J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Phys. Rev. C 97, 025806 (2018), arXiv:1708.06895 [nucl-th] .
- F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018).
- P. Char, S. Traversi, and G. Pagliara, Particles 3, 621 (2020).
- J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015).
- F. Acernese et al. (VIRGO), Class. Quant. Grav. 32, 024001 (2015).
- P. Landry and R. Essick, Phys. Rev. D 99, 084049 (2019).
- J. Piekarewicz and F. J. Fattoyev, Phys. Rev. C 99, 045802 (2019).
- M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010).
- D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019).
- D. Psaltis, F. Özel, and D. Chakrabarty, Astrophys. J. 787, 136 (2014), arXiv:1311.1571 [astro-ph.HE] .
- N.-B. Zhang, B.-A. Li, and J. Xu, The Astrophysical Journal 859, 90 (2018).
- J. M. Lattimer and A. W. Steiner, Eur. Phys. J. A 50, 40 (2014a), arXiv:1403.1186 [nucl-th] .
- B. P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017a), arXiv:1710.05833 [astro-ph.HE] .
- J. M. Lattimer and A. W. Steiner, The European Physical Journal A 50, 1 (2014b).
- M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE] .
- S. Huth et al., Nature 606, 276 (2022).
- B. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 892, L3 (2020), arXiv:2001.01761 [astro-ph.HE] .
- P. Russotto and et. al., Phys. Rev. C 94, 034608 (2016).
- C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019), arXiv:1710.08220 [nucl-th] .
- S. Huth, C. Wellenhofer, and A. Schwenk, Phys. Rev. C 103, 10.1103/physrevc.103.025803 (2021), 2009.08885 .
- Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Suppl. 235, 37 (2018), arXiv:1801.01837 [astro-ph.HE] .
- B. Margalit and B. D. Metzger, Astrophys. J. Lett. 850, L19 (2017).
- L. Rezzolla, E. R. Most, and L. R. Weih, Astrophys. J. 852, L25 (2018), arXiv:1711.00314 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019), arXiv:1805.11579 [gr-qc] .
- M. Bulla, Mon. Not. Roy. Astron. Soc. 489, 5037 (2019), arXiv:1906.04205 [astro-ph.HE] .
- I. Tews, Phys. Rev. C 95, 015803 (2017), arXiv:1607.06998 [nucl-th] .
- B. A. Brown and A. Schwenk, Phys. Rev. C 89, 011307 (2014).
- W. Lynch and M. Tsang, Physics Letters B 830, 137098 (2022).
- P. Danielewicz, P. Singh, and J. Lee, Nuclear Physics A 958, 147 (2017).
- Z. Zhang and L.-W. Chen, Phys. Rev. C 92, 031301 (2015), arXiv:1504.01077 [nucl-th] .
- D. Adhikari et al. (PREX), Phys. Rev. Lett. 126, 172502 (2021), arXiv:2102.10767 [nucl-ex] .
- J. Estee et al. (SπRITS𝜋RIT\mathrm{S}\pi\mathrm{RIT}roman_S italic_π roman_RIT Collaboration), Phys. Rev. Lett. 126, 162701 (2021).
- M. D. Cozma, Eur. Phys. J. A 54, 40 (2018), arXiv:1706.01300 [nucl-th] .
- P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002).
- E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021), arXiv:2104.00880 [astro-ph.HE] .
- J. Margueron, J. Navarro, and N. Van Giai, Phys. Rev. C 66, 014303 (2002).
- J. Gómez, C. Prieto, and J. Navarro, Nuclear Physics A 549, 125 (1992).
- B. K. Agrawal, S. Shlomo, and V. K. Au, Phys. Rev. C 72, 014310 (2005).
- J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).
- R. C. Tolman, Phys. Rev. 55, 364 (1939).
- T. Hinderer, The Astrophysical Journal 677, 1216 (2008).
- G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299 (1971).
- J. Carriere, C. J. Horowitz, and J. Piekarewicz, Astrophys. J. 593, 463 (2003).
- H. D. Thi, C. Mondal, and F. Gulminelli, Universe 7, 373 (2021).
- P. T. H. Pang et al., Nature Commun. 14, 8352 (2023), arXiv:2205.08513 [astro-ph.HE] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.