Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Universal dynamics of the entropy of work distribution in spinor Bose-Einstein condensates (2401.05921v2)

Published 11 Jan 2024 in cond-mat.quant-gas and quant-ph

Abstract: Driving a quantum many-body system across the quantum phase transition (QPT) in the finite time has been concerned in different branches of physics to explore various fundamental questions. Here, we analyze how the underlying QPT affects the work distribution $P(W)$, when the control parameter of a ferromagnetic spinor Bose-Einstein condensates is tuned through the critical point in the finite time. We show that the work distribution undergoes a dramatic change with increasing the driving time $\tau$. To capture the characteristics of the work distribution, we analyze the entropy of $P(W)$ and find three different regions in the evolution of entropy as a function of $\tau$. Specifically, the entropy is insensitive to the driving time in the region of very short $\tau$, while it exhibits a universal power-law decay in the region with intermediate value of $\tau$. In particular, the power-law scaling of the entropy is according with the well-known Kibble-Zurek mechanism. For the region with large $\tau$, the validity of the adiabatic perturbation theory leads to the entropy decay as $\tau{-2}\ln\tau$. Our results verify the usefulness of the entropy of the work distribution for understanding the critical dynamics and provide an alternative way to experimentally study nonequilibrium properties in quantum many-body systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
  2. J. Dziarmaga, Advances in Physics 59, 1063 (2010).
  3. A. del Campo and W. H. Zurek, International Journal of Modern Physics A 29, 1430018 (2014).
  4. A. A. Zvyagin, Low Temperature Physics 42, 971 (2016).
  5. M. Heyl, Reports on Progress in Physics 81, 054001 (2018).
  6. J. Marino and A. Silva, Phys. Rev. B 89, 024303 (2014).
  7. M. Campisi and J. Goold, Phys. Rev. E 95, 062127 (2017).
  8. J. Goold, F. Plastina, A. Gambassi, e. F. Silva, Alessandro”, L. A. Correa, C. Gogolin, J. Anders,  and G. Adesso, “The role of quantum work statistics in many-body physics,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions (Springer International Publishing, Cham, 2018) pp. 317–336.
  9. N. O. Abeling and S. Kehrein, Phys. Rev. B 93, 104302 (2016).
  10. A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
  11. S. Campbell, Phys. Rev. B 94, 184403 (2016).
  12. Q. Wang and H. T. Quan, Phys. Rev. E 96, 032142 (2017).
  13. T. W. B. Kibble, Journal of Physics A: Mathematical and General 9, 1387 (1976).
  14. W. H. Zurek, Nature 317, 505 (1985).
  15. W. Zurek, Physics Reports 276, 177 (1996).
  16. B. Damski, Phys. Rev. Lett. 95, 035701 (2005).
  17. Z. Fei and C. P. Sun, Phys. Rev. B 103, 144204 (2021).
  18. F. Zhang and H. T. Quan, Phys. Rev. E 105, 024101 (2022).
  19. Y. Kawaguchi and M. Ueda, Physics Reports 520, 253 (2012).
  20. D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
  21. Z.-X. Niu and Q. Wang, “Characterizing dynamical phase transitions in a spinor bose-einstein condensate via quantum and semiclassical analyses,”  (2023a), arXiv:2310.15841 [cond-mat.quant-gas] .
  22. Z.-X. Niu and Q. Wang, Phys. Rev. A 107, 033307 (2023b).
  23. J. Cheng, Phys. Rev. A 81, 023619 (2010).
  24. M. Rautenberg and M. Gärttner, Phys. Rev. A 101, 053604 (2020).
  25. B. Evrard, A. Pizzi, S. I. Mistakidis,  and C. B. Dag, “Quantum scars and regular eigenstates in a chaotic spinor condensate,”  (2023), arXiv:2306.10411 [cond-mat.quant-gas] .
  26. H. Zhang, Y. Qian, Z.-X. Niu,  and Q. Wang, “Excited stated quantum phase transitions and the entropy of the work distribution in the anharmonic lipkin-meshkov-glick model,”  (2023), arXiv:2310.14285 [quant-ph] .
  27. C. De Grandi and A. Polkovnikov, “Adiabatic perturbation theory: From landau–zener problem to quenching through a quantum critical point,” in Quantum Quenching, Annealing and Computation, edited by A. K. Chandra, A. Das,  and B. K. Chakrabarti (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010) pp. 75–114.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.