Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Stirring Strategies for Passive Scalars in a Domain with a General Shape and No-Flux Boundary Condition (2401.05684v1)

Published 11 Jan 2024 in math.OC, cs.NA, math.NA, and physics.flu-dyn

Abstract: Multiscale metrics such as negative Sobolev norms are effective for quantifying the degree of mixedness of a passive scalar field advected by an incompressible flow in the absence of diffusion. In this paper we introduce a mix norm that is motivated by Sobolev norm $H{-1}$ for a general domain with a no-flux boundary. We then derive an explicit expression for the optimal flow that maximizes the instantaneous decay rate of the mix norm under fixed energy and enstrophy constraints. Numerical simulations indicate that the mix norm decays exponentially or faster for various initial conditions and geometries and the rate is closely related to the smallest non-zero eigenvalue of the Laplace operator. These results generalize previous findings restricted for a periodic domain for its analytical and numerical simplicity. Additionally, we observe that periodic boundaries tend to induce a faster decay in mix norm compared to no-flux conditions under the fixed energy constraint, while the comparison is reversed for the fixed enstrophy constraint. In the special case of even initial distributions, two types of boundary conditions yield the same optimal flow and mix norm decay.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.