Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Analytical approximations for generalized quantum Rabi models (2401.05615v1)

Published 11 Jan 2024 in quant-ph, math-ph, and math.MP

Abstract: The quantum Rabi model is essential for understanding interacting quantum systems. It serves as the simplest non-integrable yet solvable model describing the interaction between a two-level system and a single mode of a bosonic field. In this study, we delve into the exploration of the generalized quantum Rabi model, wherein the bosonic mode of the field undergoes squeezing. Utilizing the Segal-Bargmann representation of the infinite-dimensional Hilbert space, we demonstrate that the energy spectrum of the generalized quantum Rabi model, when both the Rabi coupling strength and the squeezing strength are not significantly large compared to the field mode frequency, can be analytically determined by a bi-confluent Fuchsian equation with two regular singularities at 0 and 1 and an irregular singularity of rank two at infinity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. I. I. Rabi, Phys. Rev. 49, 324 (1936).
  2. I. I. Rabi, Phys. Rev. 51, 652 (1937).
  3. L. Yanbing, and A. A. Houck, Nat. Phys. 13, 48 (2017).
  4. D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
  5. V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961).
  6. I. E. Segal, Mathematical problems of relativistic physics (American Mathematical Soc., 1963).
  7. W. M. Zhang, R. Gilmore, and D. H. Feng, Rev. Mod. Phys. 4, 867 (1990).
  8. A. Ronveaux and F. M. Arscott, Heun’s differential equations (Oxford University Press, 1995).
  9. B. R. Judd, J. Phys. C: Solid State Phys. 12, 1685 (1979).
  10. W. Pauli, Pauli lectures on physics. V. Wave mechanics (Dover Publications, 2000).
  11. A. M. Ishkhanyan, and A. E. Grigoryan, J. Phys. A Math. Theor. 47, 465205 (2014).
  12. A. M. Ishkhanyan, T. A. Shahverdyan, and T. A. Ishkhanyan, Eur. Phys. J. D. 69, 1 (2015).
  13. C. F. Kam, and Y. Chen, New J. Phys. 22, 023021 (2020).
  14. C. F. Kam, and Y. Chen, Z. Angew. Math. Phys. 72, 1 (2021).
  15. S. Dorosz, T. Platini, and D. Karevski, Phys. Rev. E 77, 051120 (2008).
  16. C. A. Downing, and M. E. Portnoi, Phys. Rev. B 94, 165407 (2016).
  17. C. F. Kam, and Y. Chen, Ann. Phys. (Berl.) 533, 2000349 (2021).
  18. C. F. Kam, and Y. Chen, arXiv preprint arXiv:2301.04816 
  19. C. C. Gerry, Phys. Rev. A 37, 2683 (1988).
  20. S. E. Dwyer, G. L. Mansell, and L. McCuller, Galaxies 10, 46 (2022).
  21. C. F. Kam, and X. D. Hu, arXiv preprint arXiv:2312.10820 
  22. C. F. Kam, and X. D. Hu, arXiv preprint arXiv:2401.03617 

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.